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Abstract

We analyze the formal grounding behind
Negative Correlation (NC) Learning, an en-
semble learning technique developed in the
evolutionary computation literature. We
show that by removing an assumption made
in the original work, NC can be seen to be
exploiting the well-known Ambiguity decom-
position of the ensemble error, grounding it
in a statistics framework around the bias-
variance decomposition. We use this ground-
ing to find bounds for the parameters, and
provide insights into the behaviour of the
optimal parameter values. These observa-
tions allow us understand how NC relates to
other algorithms, identifying a group of pa-
pers spread over the last decade that have
all exploited the Ambiguity decomposition
for machine learning problems. When tak-
ing into account our new understanding of
the algorithm, significant reductions in error
rates were observed in empirical tests.

1. Introduction

We study the formal basis behind Negative Correla-
tion (NC) Learning, a successful neural network en-
semble learning technique developed in the evolution-
ary computation literature. NC has shown a number of
empirical successes and applications, including regres-
sion problems, time-series prediction (Liu, 1998), and
classification problems (McKay & Abbass, 2001). It
has consistently demonstrated significant performance

improvements over a regular ensemble system, show-
ing very competitive results with other techniques like
Mixtures of Experts and RBF networks (Liu & Yao,
1997). NC so far has had very little formal analysis to
explain why it works when it does; this provides the
motivation for our work.

1.1. A Dichotomy of Methods

A neural network ensemble is a collection of neural
networks. The ensemble as a whole provides an out-
put which is a combination of the individual network
outputs; the motivation for this is to further decrease
generalisation error. Several theoretical and empirical
works have shown that for best performance, the errors
of the individuals should exhibit as low correlation as
possible (Ueda & Nakano, 1996; Rosen, 1996), whilst
maintaining a reasonably high accuracy. Due to the
many different forms of network outputs (probabili-
ties, class labels, ranked lists of labels) this has become
the amorphous goal of achieving high ‘error diversity’.
In this work we are concerned with regression-based
combinations, enabling a more rigorous treatment of
the error diversity.

A number of methods designed to encourage error
diversity have matured over the last decade. Our
framework for this investigation hinges on regarding
these methods as dichotomous: explicit and implicit
diversity methods. Explicit methods measure diver-
sity (correlation) in some manner and directly incor-
porate this knowledge into the construction or combi-
nation of the estimators; for example Input Decima-
tion Ensembles (Oza & Tumer, 2001), which measure
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correlation between features before assigning them to
particular networks, or AdaBoost (Freund & Schapire,
1996) and its many variants, which explicitly mod-
ify the distributions of training data fed to each net-
work. Implicit methods utilise purely stochastic per-
turbations to encourage diversity; for example, Bag-
ging (Breiman, 1996) or similar data resampling tech-
niques. In this paper we are concerned with explicit
methods, in particular those which share a common
root in the Ambiguity decomposition from (Krogh &
Vedelsby, 1995), widely recognised as one of the most
important theoretical results obtained for ensemble
learning. It states that the mean-square error (MSE)
of the ensemble estimator is guaranteed to be less than
or equal to the average mean-square error of the com-
ponent estimators; the details of this will be expanded
upon later.

1.2. Negative Correlation Learning

After this initial branching, both explicit and implicit
methods can be further divided as manipulating ei-
ther: the initial weights of the networks, the network
architectures, the training data, or the learning algo-
rithm. Some authors, taking the latter approach, have
found benefit from using a regularisation term in the
learning. Negative Correlation1 (NC) Learning (Liu,
1998), an extension of Rosen’s decorrelated networks
(Rosen, 1996), is an ensemble learning technique which
incorporates such a regularisation term into the back-
propagation error function. The regularisation term
is meant to quantify the amount of error correlation,
so it can be minimised explicitly during training—as
such, it is an explicit diversity method. In NC the
error εi of network i is:

εi =
1
2
(fi − d)2 + λpi (1)

where fi is the output of the ith network on a single
input pattern, d is the target, and λ is a weighting
parameter on the penalty function pi. Strictly, this
notation should include input, so fi(n) and d(n) for
the nth input pattern, but we omit this for notational
simplicity. The output of the ensemble is a simple
average:

f̄ =
1
M

i=M∑
i=1

fi (2)

The λ parameter in equation (1) controls a trade-off
between objective and penalty functions; with λ = 0

1So-called because it has demonstrated on a number of
occasions that it is able to generate estimators with nega-
tively correlated errors.

we have an ensemble with each network training inde-
pendently of the others, using vanilla backpropagation.
NC has a penalty function of the form:

pi = (fi − f̄)
∑
j 6=i

(fj − f̄) (3)

where f̄ is the output of the whole ensemble of M
networks at the previous timestep. Since this penalty
is meant to quantify error correlation in some manner,
the λ parameter can be seen as managing the balance
between accuracy and diversity ; too much emphasis
on diversity (large λ) and the networks will sacrifice
their accuracy for the sake of just being “different”
from one another. NC has seen a number of empirical
successes (described in the introduction to this paper),
consistently outperforming a simple ensemble system,
but so far has had very little formal analysis to explain
why it works when it does; this leads naturally to our
first question.

1.3. Why does the algorithm work?

The MSE of an ensemble system can be decomposed
into bias, variance and covariance (Ueda & Nakano,
1996). The strength parameter λ in NC provides a
way of controlling the trade-off between these three
components: a higher value encourages a decrease in
covariance, as has been demonstrated empirically (Liu,
1998). Liu also observes that too high a λ value can
cause a rapid increase in the variance component, caus-
ing overall error to be higher; no theoretical explana-
tion was given for this behavior, and as such we do not
yet have a clear picture of the exact dynamics of the
algorithm.

When λ = 1, we have a special situation; this was de-
scribed by Liu to show a theoretical justification for
NC-Learning. It should be noted that, in the calcula-
tion of the derivative, Liu has: “... made use of the
assumption that the output of the ensemble f̄ has con-
stant value with respect to fi” (Liu, 1998, p.29).

When λ = 1 we have:

εi =
1
2
(fi − d)2 + λ(fi − f̄)

∑
j 6=i

(fj − f̄)

∂εi

∂fi
= fi − d +

∑
j 6=i

(fj − f̄)

= fi − d− (fi − f̄)
= f̄ − d

However, although the assumption of constant f̄ is
used, so is the property that

∑
j 6=i(fj− f̄) = −(fi− f̄),



the sum of deviations around a mean is equal to zero;
obviously the sum of deviations around a constant does
not have this property. Using this apparently contra-
dictory assumption, and the fact that the overall en-
semble error function is defined as ε = 1

2 (f̄ − d)2, it
was stated:

∂ε

∂fi
=

1
M

[ ∂εi

∂fi

]
(4)

showing that the gradient of the individual network
error is directly proportional to the gradient of the en-
semble error. Though this is obviously a useful prop-
erty, the justification for the assumption is unclear.
The remainder of this work will illustrate the benefits
that be gained from removing this assumption. Before
we embark on this, it would be useful to first under-
stand a framework into which NC can fit. Can we find
a more solid theoretical grounding to NC?

2. Formalising NC-Learning

In this section we show how NC can be related to the
ambiguity decomposition (Krogh & Vedelsby, 1995)
which showed that the mean-square error of the ensem-
ble estimator is guaranteed to be less than or equal to
the average mean-square error of the component es-
timators. They showed the ensemble error could be
broken down into two terms, one of which is depen-
dent on the correlations between network outputs; the
exact nature of this result will be given in the next
section.

2.1. NC uses the Ambiguity Decomposition

We note that the penalty function, equation (3), can
be broken down into a sum of pairwise correlations
between the networks. If we remember again that the
MSE of an ensemble decomposes into bias plus vari-
ance plus covariance (Ueda & Nakano, 1996), then in-
cluding some measure of correlation to be minimised
seems like an intuitive thing to do, first noted by
(Rosen, 1996). However this intuition is not enough.
We note that the penalty function can be rearranged
to:

pi = −(fi − f̄)2 (5)

which is again due to the property that the sum of
deviations around a mean is equal to zero. This re-
arrangement is only possible if we remove Liu’s as-
sumption of constant f̄ . As can be seen, each network
minimises its penalty function by moving its output
away from the ensemble output, the mean response of
all the other networks.

So, why should increasing distance from the mean, or
optimising equation (1), necessarily lead to a decrease

in ensemble error? An examination of the proof by
Krogh and Vedelsby can answer this question, and
also raise some new questions on the setting for the
λ parameter. Their work showed that the following
statement about ensemble error was true:

(f̄ − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − f̄)2 (6)

where wi is the weighting on the ith network. This
says that the squared error of the ensemble estima-
tor is equal to the weighted average squared error of
the individuals, minus a term which measures aver-
age correlation. This allows for non-uniform weights
(with the constraint

∑
i wi = 1) so the general form

of the ensemble output is f̄ =
∑

i wifi. This result in
equation (6) stems from a number of definitions, one
of which is the ambiguity of a single member of the
ensemble:

vi = (fi − f̄)2 (7)

Remembering that the individual networks in NC-
learning minimise the penalty function, and looking at
equations (5) and (7) we can see pi = −vi and so the
networks are in fact maximising this ambiguity term,
equation (7). This in turn of course affects the total
ensemble error.

To understand this further we take equation (6), mul-
tiply through by 1

2 and rearrange slightly assuming our
ensemble is uniformly weighted, we then have:

1
2
(f̄ − d)2 =

1
M

∑
i

[
1
2
(fi − d)2 − 1

2
(fi − f̄)2

]
(8)

We see that the MSE of an ensemble can be decom-
posed into a weighted summation, where the ith term
is the backpropagation error function plus the NC-
Learning penalty function with the strength parameter
set at 0.5.

Now, since we have removed the constraint of assum-
ing constant f̄ to allow a link to the ambiguity decom-
position, it seems more rigorous to differentiate the
network error again without this assumption. What
happens in this case? We have a partial derivative:

∂εi

∂fi
= fi − d− λ

[
2
M − 1

M
(fi − f̄)

]
(9)

where M is the number of networks in the ensemble.
Keeping the assumption of constant f̄ causes this term
2M−1

M to disappear. However, it does seem sensible to
retain this, as it takes account of the number of net-
works. In all of the previous work on NC (Liu, 1998;



Liu & Yao, 1997; McKay & Abbass, 2001), the λ pa-
rameter was thought to be problem dependent. Now
we understand that it has a deterministic component,
this 2M−1

M . To avoid confusion, from this point on, we
shall refer to the λ parameter in the following context,
where γ is still a problem-dependent scaling parame-
ter:

λ = γ

[
2
M − 1

M

]
(10)

In understanding the role of the strength parameter a
natural question to ask is, what are the bounds?

2.2. What are the bounds of λ and γ?

Liu stated that the bounds of λ should be [0, 1], based
on the following calculation:

∂εi

∂fi
= fi − d + λ

∑
j 6=i

(fj − f̄)

= fi − d− λ(fi − f̄)
= (1− λ)(fi − d) + λ(f̄ − d)

He states: “the value of parameter λ lies inside the
range 0 ≤ λ ≤ 1 so that both (1 − λ) and λ have
non-negative values” (Liu, 1998, p.29). However this
justification is questionable, and again here we see the
assumption of constant f̄ is violated.

We therefore have to ask, why would it be a problem
if either (1 − λ) or λ took negative values? Maybe
the bounds of λ should not be [0, 1]. How can we de-
termine what the true bounds should be? The NC
penalty term is a regularisation term—it ‘warps’ the
error function of the network, making the global mini-
mum easier to find. If, due to this warping, the second
derivative of this function becomes negative, then our
landscape contains only local maxima or points of in-
flexion and we have lost any useful gradient informa-
tion from our original objective function. We have the
second partial derivative of εi with respect to fi:

∂2εi

∂f2
i

= 1− λ(1− 1
M

)

So, we would like the following inequality to hold:

0 < 1− λ(1− 1
M

)

Rearranging this we have an upper bound for λ and
also γ:

λupper =
M

M − 1
γupper =

M2

2(M − 1)2

Figure 1 plots λupper and the equivalent γupper for dif-
ferent numbers of networks. We see that as the num-
ber of networks increases, λupper asymptotes to 1, and
γupper to 0.5. It should be noted that with M ≤ 10 we
have λupper considerably greater than 1.0.
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Figure 1. The Upper bound on γ and λ

2.3. An Empirical Study

With our new understanding of the grounding behind
NC, we now perform an empirical evaluation, and show
that it is critical to consider values for the strength
parameter outside the originally specified range.

Table 1 shows the classification error rates of two em-
pirical tests, on the Wisconsin breast cancer data from
the UCI repository (699 patterns), and the heart dis-
ease Statlog dataset (270 patterns). An ensemble con-
sisting of two networks, each with five hidden nodes,
was trained for 2000 iterations using NC. We use 5-
fold cross-validation, and 40 trials from uniform ran-
dom weights in [−0.5, 0.5] for each setup; in total 200
trials were conducted for each experimental configura-
tion. It should be noted that with 2 networks, γ = λ.
The λ values tested are those considered in the orig-
inal work on NC: 0.0, 0.5 and 1.0. When λ was set
appropriately, results on the heart data showed NC
significantly better than a simple ensemble (equiva-
lent to λ = 0) at α = 0.05 on a two-tailed t-test. On
the breast cancer data, although the mean was lower,
it was not statistically significant.

Figures 2 and 3 show the results of repeating our
experiments, but illustrating the full range of the
strength parameter. Mean error rate over the 200
trials is plotted, and 95% confidence intervals shown.
We see that performance on the breast cancer data
can be improved significantly by considering the up-



Table 1. Mean classification error rates (200 trials) using
NC on two UCI datasets

λ = 0 λ = 0.5 λ = 1
Breast cancer 0.0408 0.0410 0.0383
Heart disease 0.2022 0.1995 0.1802

per bounds beyond those previously specified; on the
heart disease data, stable performance is observed be-
yond λ = 1.
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Figure 2. Breast cancer dataset results

As a further measure of comparison, we calculated the
percentage reduction in the mean error rate, in relation
to when λ = 0. On the breast cancer data, using λ = 1
gave a 6% reduction, but using the optimum value at
λ = 1.7 gave a 21% reduction.

We have shown a significant performance improvement
by reconsidering the bounds of the strength parame-
ters. It should be noted that, even though the theo-
retical upper bound is known, in practise it seems er-
ror can rise rapidly long before this bound is reached.
On the breast cancer data, error became uncontrol-
lable beyond λ = 1.8, and on the heart disease data
at λ = 1.45; it remains to be seen if it is possible to
empirically characterise when this rapid increase will
occur.

We know from figure 1 that the upper bound reduces
as we add more networks; from this it is reasonable to
assume that the optimal value (in the sense of min-
imising error rate) would follow a similar trend. We
sampled the γ value at a resolution of 0.05, and plotted
the optimal value found (over 200 trials, as previously
described) as we increase the number of networks used
for the Breast cancer and Heart disease tasks. Figure 4
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shows the optimal parameter decays to 0.5 as we add
more networks. But why? What role does γ play?
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Figure 4. The Optimal γ parameter as we increase the
number of networks on the Breast Cancer (circles) and
Heart disease (squares) tasks

3. A Statistical Interpretation of NC

In this section we give a statistical interpretation of
NC Learning; we use this to form a hypothesis as to
why it works and what role the strength parameter
plays.

First, as an illustrative scenario, consider a single neu-
ral network approximating a sine wave; our network
has been supplied with a limited set of datapoints to
train on, the inputs chosen randomly at uniform from
[−π, π]. Now, consider a single testing datapoint, to
find the value of sin(2). The true answer is ∼ 0.909,



yet we know our network may over- or under-predict
that value. The way in which it makes errors will
follow a distribution dependent on the random train-
ing data sample it received, and also on the random
initialisation of the weights. The mean of this distri-
bution is the expectation value ET,W {f}, where T and
W are the distributions defining these random vari-
ables, and f is a network trained with a particular
dataset and a particular weight initialisation. Figure 5
illustrates a typical error distribution, with the target
value d shown. The four crosses marked are estimates
of sin(2) from a hypothetical network; the estimates
differ only in that the network was supplied with a
different training sample each time.

d=0.909

1.00.8

Figure 5. Typical error distribution of an estimator ap-
proximating sin(2)

From this viewpoint we can immediately see the par-
allels to an ensemble system. Each member of an en-
semble is a realisation of the random variable defined
by this distribution over all possible training datasets
and weight initialisations. The ensemble output is the
weighted average of this set of realisations; all our di-
versity promoting mechanisms are there to encourage
our sample mean f̄ to be a closer approximation to
ET,W {f}. If we have a large ensemble, we have a large
sample from this space; consequently with a large sam-
ple we can expect that we have a good approximation
to the mean, ET,W {f}. If we have a smaller ensem-
ble, we cannot expect this: our sample mean may be
upward or downward biased. In order to correct this,
some methods, such as Bagging, construct our net-
works from different training datasets, allowing us to
sample a more representative portion of the space.

The ambiguity decomposition shows us that each re-
alisation i contributes two components of error to the
overall ensemble generalisation error; the first compo-
nent is (fi − d)2, and the second is (fi − f̄)2. Nor-
mally in an ensemble, each network would be trained

with just the first component. NC works well because
it explicitly includes this second component of error;
in addition it can use a larger γ to over-emphasise
the second component when we have a small number
of realisations, causing them to spread more widely,
giving us a more representative sample from the true
distribution of the estimator. This provides a useful
interpretation of the role of γ; however, generalisation
error is normally expressed in terms of the statistical
concepts of bias and variance. How can NC be under-
stood in this context?

Ensembles are well-known as a variance-reduction
technique. The variance of the ensemble will be lower
than the average variance of the components; this can
be understood by remembering that with independent
random variables X and Y , and a constant weighting
term a, we have V ar[aX]+V ar[aY ] = a2V ar[X +Y ].
If the variables are not independent, an additional co-
variance term is introduced, illustrating why we strive
for lower correlation when constructing an ensemble.
The second term on the right handside of equation 6 is
the ensemble ambiguity ; this is maximised when train-
ing an ensemble with NC. When wi = 1

M for all i, it
can be shown that the expected value of this term is
an approximation to the average covariance of the en-
semble members:

E
{ 1

M

∑
i

(fi− f̄)2
}

= − 1
M

∑
i

∑
j 6=i

E
{

(fi− f̄)(fj− f̄)
}

(11)

It is an approximation because with a finite number
of networks, f̄ 6= E{f}, and also because the sum
is multiplied by 1

M instead of 1
M(M−1) . We can see

that when we are increasing ambiguity, we are reduc-
ing this covariance term. When training an ensemble
with NC, we use the γ parameter, directly attempting
to reduce covariance by over-emphasising this compo-
nent. A larger γ parameter will be needed when our
approximation is not very good: this is will most likely
occur when we have a small number of networks, but
it could also be due to noise in the training data. It
is hoped that with further analysis we will be able to
mathematically characterise this, and provide further
guidelines for setting the strength parameter.

4. Related Work: The Ambiguity
Family

In this section we briefly review some other techniques
which have exploited the ambiguity decomposition in
some way, either to create or combine a set of predic-
tors.



In the last few years, the ambiguity decomposition has
quietly been utilised in almost every aspect of ensem-
ble construction. Krogh and Vedelsby themselves de-
veloped an active learning scheme (Krogh & Vedelsby,
1995), based on the method of query by committee,
selecting patterns to train on that had a large ambigu-
ity; this showed significant improvements over passive
learning in approximating a square wave function.

(Opitz, 1999) selected feature subsets for the ensem-
ble members to train on, using a genetic algorithm
with an ambiguity-based fitness function; this showed
gains over Bagging and Adaboost on several classifi-
cation datasets from the UCI repository. A precur-
sor to this work was Opitz and Shavlik’s Addemup
algorithm (Opitz & Shavlik, 1996), which used the
same fitness function to optimise the network topolo-
gies composing the ensemble. Interestingly, both these
GA-based approaches also used a strength parameter,
λ, to vary the emphasis on diversity. The difference
between their work and NC is that NC incorporates
ambiguity into the backpropagation weight updates,
while Addemup trains with standard backpropagation,
then selects networks with a good error diversity.

The original ambiguity paper (Krogh & Vedelsby,
1995) also used an estimate of ambiguity to optimise
the ensemble combination weights, showing in some
cases it is optimal to set a network weight to zero—
essentially removing it from the ensemble. In (Carney
& Cunningham, 1999) bootstrap resamples of train-
ing data are used to estimate ambiguity, in order to
approximate the optimal training time; this minimises
the overall ensemble generalisation error.

We can see that ambiguity has been utilised in many
ways: pattern selection (Krogh & Vedelsby, 1995), fea-
ture selection (Opitz, 1999), optimising the topolo-
gies (Opitz & Shavlik, 1996) of networks in the en-
semble, optimising the combination function (Krogh
& Vedelsby, 1995), and also optimising training time
(Carney & Cunningham, 1999). NC fits neatly into the
gap as the first technique to directly use ambiguity for
network weight updates.

In additional, related work, not strictly members of
the Ambiguity family, (McKay & Abbass, 2001) ana-
lyzed an alternative NC penalty function, named Root
Quartic NC Learning. Their method showed better
performance than standard NC when using large en-
sembles, and is in need of a theoretical analysis to
explain why that is so. In this paper, NC uses its reg-
ularization term on a uniformly weighted combination
of the networks. It would be interesting to extend it to
a non-uniformly weighted combination, and also to un-
derstand the dynamics of a voted combination; Any-

Boost (Mason et al., 2000) uses regularization tech-
niques to optimize the convex combination weights in
a weighted voting ensemble, and will be the subject of
future study.

5. Conclusions

We analyzed an ensemble technique, Negative Corre-
lation (NC) Learning (Liu, 1998), that extended from
(Rosen, 1996), and developed in the evolutionary com-
putation literature. We showed a link to the Ambigu-
ity decomposition, and explained the success of NC in
terms of sampling statistics and the bias-variance de-
composition. This formalisation allowed us to define
bounds on the parameters, and provide insights into
the optimal settings for these parameters. These ob-
servations allow us understand how NC relates to other
algorithms, identifying a group of papers spread over
the last decade that have all exploited the Ambiguity
decomposition for machine learning problems. When
taking into account our new understanding of the pa-
rameters, significant reductions in error were observed
in empirical tests.

Domingos (Domingos, 2000) showed a unified bias-
variance decomposition for squared-loss and 0/1-loss
functions. The existence of a bias-variance decompo-
sition for 0/1 loss indicates an ambiguity decomposi-
tion should exist as well. The properties of this and
whether it could be utilised for a 0/1 loss version of
NC-Learning will be the subject of future work.
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