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Abstract

Ensemble approaches to classification and regression have attracted a great deal of interest

in recent years. These methods can be shown both theoretically and empirically to outperform

single predictors on a wide range of tasks. One of the elements required for accurate prediction

when using an ensemble is recognised to be error “diversity”. However, the exact meaning of

this concept is not clear from the literature, particularly for classification tasks. In this paper

we first review the varied attempts to provide a formal explanation of error diversity, including

several heuristic and qualitative explanations in the literature. For completeness of discussion

we include not only the classification literature but also some excerpts of the rather more mature

regression literature, which we believe can still provide some insights. We proceed to survey

the various techniques used for creating diverse ensembles, and categorise them, forming a

preliminary taxonomy of diversity creation methods. As part of this taxonomy we introduce

the idea of implicit and explicit diversity creation methods, and three dimensions along which

these may be applied. Finally we propose some new directions that may prove fruitful in

understanding classification error diversity.

1 Introduction

Creating diverse sets of classifiers is one of the keys to success in multiple classifier systems. Yet
this is not easy, and our understanding of classifier error diversity is still incomplete. While we
have many measures of diversity from the numerical taxonomy literature [1], we do not yet have a
complete grounded framework; neither do we have a useful guide through the myriad of techniques
by which we could create such error diversity.

While ensemble approaches to classification usually make use of non-linear combination methods
like majority voting; regression problems are naturally tackled by linearly weighted ensembles. These
type of ensembles have a much clearer framework for explaining the role of diversity than voting
methods. In particular the Ambiguity decomposition [2] and bias-variance-covariance decomposition
[3] provide a solid quantification of diversity for linearly weighted ensembles by connecting it back to
an objective error criterion: mean squared error. We believe that this can yet provide some insights
into diversity in classification problems.

The significant contribution of the paper is a survey and categorisation of the many ad-hoc
methods for diversity creation in a classification context. We fully acknowledge that to embark
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upon such a venture welcomes debate, and can never result in a flawless categorisation of the field.
With this in mind we note that a useful taxonomy should achieve two things: firstly to allow us
to spot gaps in the literature, allowing us to explore new techniques, and secondly to allow us to
measure the ‘distance’ between existing techniques; this would afford us some form of metric which
could group techniques into families by how well they can perform in different application domains.
We believe our study achieves the former of these two, allowing us to identify locations in the
space of possible ensemble techniques that have not yet been exploited. We suggest studies akin to
Friedman’s ISLE framework on importance sampling ensembles [4] will give insights into the latter
challenge.

In the next section we provide explanations of why ensembles can work well. This leads in Sec-
tion 2.1 to a description of the existing formal accounts of diversity in the case of regression using
a linearly weighted ensemble. As part of this we explicitly show the link between the bias-variance-
covariance and Ambiguity decompositions. Attempts to characterise diversity for classification prob-
lems are dealt with in Section 2.3. In Section 3 we describe our proposed taxonomy of diversity
creation methods. Discussions of some important issues in ensemble learning are given in Section 4.
Finally, conclusions and future research directions are presented in Section 5.

2 When is an Ensemble Better than a Single Learner?

In this section we scrutinise the concept of error “diversity”. We review existing explanations of
why ensembles with diverse errors perform well; for completeness of the discussion we include the
literature for both the regression and classification case. In the process of this we clarify a subtle
point, often overlooked, to do with quantifying classifier ensemble diversity and the inherent non-
ordinality of the predictor outputs. We proceed with a review of the literature on attempts to create
diversity in both forms. We comment on the structure of the field and in the following section
propose a novel way to categorise the many ad-hoc diversity creation techniques.

2.1 In a Regression Context

The first major study on combining regression estimators was by Perrone [5] (in fact at the same
time, and independently, Hashem [6] developed many of the same results). This was the first study
in the Machine Learning literature, but the topic has been covered in other research communities
for several years, for example in financial forecasting: Bates and Granger [7, 8], and Clemen [9]. As
a consequence, the understanding of diversity here is quite mature, as we will now show.

First, as an illustrative scenario, consider a single neural network approximating a sine wave; our
network has been supplied with a limited set of data points to train on, the inputs chosen randomly
at uniform from [−π, π], and a small amount of Gaussian noise added to the outputs. Now, consider
a single testing data point, to find the value of sin(2). The true answer is ∼ 0.909, yet we know
our network may possibly overpredict or underpredict that value. The way in which it makes errors
will follow a distribution dependent on the random training data sample it received, and also on the
random initialisation of the weights. The mean of this distribution is the expectation value ETW {f},
and f is a network trained with a particular dataset drawn according to a random variable T and
a particular weight initialisation drawn according to a random variable W . Throughout the paper
the expectation operator E{·} is with respect to these two random variables. It should also be
noted that for convenience we have omitted the input vector, so E{f} would normally be E{f(x)}.
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In addition all observations we present are with respect to a single pattern, but the results easily
generalise to the full space by integrating over the joint input density P (x, d). Figure 1 illustrates a
typical error distribution, with the target value d shown. The four crosses marked are estimates of
sin(2) from a hypothetical network; the estimates differ only in that the network was started from
different initial weights each time.

d=0.909

1.00.8

Figure 1: Typical error distribution of an unbiased estimator approximating sin(2)

From this viewpoint we can immediately see the parallels to an ensemble system. Each member
of an ensemble is a realisation of the random variable defined by this distribution over all possible
training datasets and weight initialisations. The ensemble output is the average of this set of
realisations; all our diversity promoting mechanisms are there to encourage our sample mean f̄ to
be a closer approximation to ET,W {f}. If we have a large ensemble, we have a large sample from
this space; consequently with a large sample we can expect that we have a good approximation to
the mean, ET,W {f}. If we have a smaller ensemble, we cannot expect this: our sample mean may be
upward or downward biased. In order to correct this, some methods, such as Bagging [10], construct
our networks from different training datasets, allowing us to sample a more representative portion
of the space. This illustration assumes that the expected value of our estimator is equal to the true
target value, i.e. an unbiased estimator. If this is not the case, we may have the situation in figure 2.

d=0.909

1.00.8

E   f {   }

Figure 2: Typical error distribution of a biased estimator approximating sin(2)

Here, our estimator is upward biased, i.e. E{f} 6= d, its expected value E{f} is high of the
target d. In this case, even if we sample many times from this distribution, we will not be able
to estimate the target accurately with a simple average combination as the simple average will
converge to E{f} as we add more networks. We would need to non-uniformly weight the outputs,
giving higher weights to the networks predicting lower values. This is of course a purely hypothetical
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scenario, we could not look this closely at every single data point to manually set the weights for the
combination, but it does serve to illustrate that the chance of an error could be reduced by using
a combination of several predictors rather than one. This intuition can be more formalised as the
Ambiguity Decomposition.

2.1.1 The Ambiguity Decomposition

Krogh and Vedelsby [2] proved that at a single data point the quadratic error of the ensemble
estimator is guaranteed to be less than or equal to the average quadratic error of the component
estimators:

(fens − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − fens)
2, (1)

where fens is a convex combination (
∑

i wi = 1) of the component estimators:

fens =
∑

i

wifi (2)

The details of the original proof from [2] were omitted for the authors’ space considerations. However,
this can in fact be shown more simply by the same manipulations as used in the bias-variance
decomposition [11], reflecting a strong relationship between the two decompositions. We present
this alternative version here:

∑

i

wi(fi − d)2 =
∑

i

wi(fi − fens + fens − d)2

=
∑

i

wi

[

(fi − fens)
2 + (fens − d)2 + 2(fi − fens)(fens − d)

]

=
∑

i

wi(fi − fens)
2 + (fens − d)2

(fens − d)2 =
∑

i

wi(fi − d)2 −
∑

i

wi(fi − fens)
2 (3)

This was a very encouraging result for ensemble research, providing a very simple expression for
the effect due to error correlation in an ensemble. In section 4 we will see how a number of researchers
have exploited this result in various ways to influence the design of their ensemble learners. The
significance of the Ambiguity decomposition is that it shows us that if we have any given set of
predictors, the error of the convex-combined ensemble will be less than or equal to the average error
of the individuals. Of course, one of the individuals may in fact have lower error than the average,
and lower than even the ensemble, on a particular pattern. But, given that we have no criterion for
identifying that best individual, all we could do is pick one at random. One way of looking at the
significance of the Ambiguity decomposition is that it tells us that taking the combination of several
predictors would be better on average over several patterns, than a method which selected one of
the predictors at random.

The decomposition is made up of two terms. The first,
∑

i wi(fi − d)2, is the weighted average
error of the individuals. The second,

∑

i wi(fi−fens)
2 is the Ambiguity term, measuring the amount

of variability among the ensemble member answers for this pattern. Since this is always positive, it
is subtractive from the first term, meaning the ensemble is guaranteed lower error than the average
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individual error. The larger the Ambiguity term, the larger the ensemble error reduction. However,
as the variability of the individuals rises, so does the value of the first term. This therefore shows
that diversity itself is not enough, we need to get the right balance between diversity (the Ambiguity
term) and individual accuracy (the average error term), in order to achieve lowest overall ensemble
error.

The Ambiguity decomposition holds for convex combinations, and is a property of an ensemble
trained on a single dataset. Unlike the bias-variance decomposition, it does not take into account the
distribution over possible training sets or possible weight initialisations. What we are interested in,
of course, is the expected error on future data points given these distributions. The Bias-Variance-
Covariance decomposition [3] takes exactly this into account.

2.2 Bias, Variance and Covariance

The concept of ensemble diversity for regression estimators can be understood further if we examine
the bias-variance decomposition [11] for an ensemble. The bias-variance decomposition for quadratic
loss states that the generalisation error of an estimator can be broken down into two components:
bias and variance. These two usually work in opposition to one other: attempts to reduce the bias
component will cause an increase in variance, and vice versa. The decomposition [11] is as follows:

E{(f − 〈d〉)2} = E{(f − E{f})2} + (E{f} − 〈d〉)2

MSE(f) = var(f) + bias(f)2

Where 〈d〉 is the expected value of the target point given the noise. If the estimator here is a
convex combined ensemble, the variance component breaks down further, and we have the Bias-
Variance-Covariance decomposition [3]. To clearly understand this, we define three concepts. The
first is bias, the averaged bias of the ensemble members:

bias =
1

M

∑

i

(E{fi} − 〈d〉) (4)

The second is var, the averaged variance of the ensemble members:

var =
1

M

∑

i

E{(fi − E{fi})
2} (5)

The third is covar, the averaged covariance of the ensemble members:

covar =
1

M(M − 1)

∑

i

∑

j 6=i

E{(fi − E{fi})(fj − E{fj})} (6)

This gives us the bias-variance-covariance decomposition of mean-square error:

E{[
( 1

M

∑

i

fi

)

− 〈d〉]2} = bias
2

+
1

M
var +

(

1 −
1

M

)

covar (7)
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We can see the mean square error of an ensemble of networks depends critically on the amount
of error correlation between networks, quantified in the covariance term. We would ideally like to
decrease the covariance, without causing any increases in the bias or variance terms. It is worth
noting that while bias and variance are constrained to be positive-valued, the covariance term can
be negative.

2.2.1 The Connection Between Ambiguity and Covariance

We now show the exact link between the two decompositions we have just described. We know that
(f̄ − d)2 can be expressed in terms of the Ambiguity decomposition. We also know that this is a
property of using a quadratic loss function with a convex combination of predictors, and not specific
to any particular target value. Therefore we could use the expected value of the target data, 〈d〉; in
this case we re-express (f̄ − 〈d〉)2 in terms of the average quadratic error and the Ambiguity term.
Using 〈d〉 instead of d, we substitute the right hand side of equation (1) into the left hand side of
equation (7).

E{
1

M

∑

i

(fi − 〈d〉)2 −
1

M

∑

i

(fi − f̄)2} = bias
2

+
1

M
var +

(

1 −
1

M

)

covar (8)

It would be interesting to understand what portions of the bias-variance-covariance decomposi-
tion correspond to the Ambiguity term and which portions to the ’average individual error’ term.
After some manipulations (for details see [12]) we can show:

E{
1

M

∑

i

(fi − 〈d〉)2} = (E{f̄} − 〈d〉)2 +
1

M

∑

i

E
{

(fi − E{f̄})2
}

= bias(f̄)2 + Ω (9)

E{
1

M

∑

i

(fi − f̄)2} =
1

M

∑

i

E{(fi − E{f̄})2} − E{(f̄ − E{f̄})2}

= Ω − var(f̄)

= Ω −

[

1

M
var +

(

1 −
1

M

)

covar

]

(10)

where the Ω term is an interaction between the two sides:

Ω =
1

M

∑

i

E{(fi − E{f̄})2} (11)

This Ω term is present in both sides—when we combine them by subtracting the Ambiguity in
equation (10), from the average MSE in equation (9), the interaction terms cancel out, and we get
the original bias-variance-covariance decomposition back, as in the RHS of equation (8). But what
does the Ω term mean? If we examine it a little further:

1

M

∑

i

E{(fi − E{f̄})2} =
1

M

∑

i

E{(fi − Ei{fi} + Ei{fi} − E{f̄})2}
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=
1

M

∑

i

Ei{(fi − Ei{fi})
2} +

1

M

∑

i

(Ei{fi} − E{f̄})2

= var + “deviations′′

This is the average variance of the estimators, plus the average squared deviation of the ex-
pectations of the individuals from the expectation of the ensemble. The fact that the interaction
exists illustrates why we cannot simply maximise Ambiguity without affecting the other parts of the
error—in effect, this interaction quantifies the diversity trade-off for regression ensembles.

In this section we have tried to give an intuition of why diversity among ensemble members that
are averaged together can be a good idea. It should be noted that the framework around these two
decompositions has told us merely how to quantify diversity, not how to achieve it in these types
of ensemble. In addition we have said nothing yet about ensemble schemes involving other types of
combination, such as voting or other non-linear schemes. We will address this in the next section.

2.3 In a Classification Context

We have shown that in a regression context, we can rigorously define why and how differences
between individual predictor outputs contribute toward overall ensemble accuracy. In a classification
context, there is no such neat theory. There is a subtle point here, often overlooked. The difficulty in
quantifying classification error diversity is not intrinsic to ensembles tackling classification problems.
It is possible to reformulate any classification problem as a regression one by choosing to approximate
the class posterior probabilities; this allows the theory we have already discussed to apply, and work
is progressing in this area, notably Tumer and Ghosh [13] and Roli and Fumera [14, 15]. For the
regression context discussed in the previous section, the question can be clearly phrased as “how can
we quantify diversity when our predictors output real-valued numbers and are combined by a convex
combination?”. For the case that Tumer and Ghosh [13] study, the question is the same, just that
the “real-valued” numbers are probabilities. A much harder question appears when we are restricted
such that our predictors can only output discrete class labels, as we have with Decision Trees or k-
nearest neighbour classifiers. In this case, the outputs have no intrinsic ordinality between them,
and so the concept of “covariance” is undefined. This non-ordinality also implies that we have to
change our combination function—a popular one is majority voting between the individual votes.
The harder question can therefore be phrased as, “how can we quantify diversity when our predictors
output non-ordinal values and are combined by a majority vote?”.

Taking all these into account, there is simply no clear analogue of the bias-variance-covariance
decomposition when we have a zero-one loss function. We instead have a number of highly restricted
theoretical results, each with their own assumptions that are probably too strong to hold in practice.
We first describe the very well-known work by Tumer and Ghosh, on combining posterior probability
estimates (ordinal values), and then turn to considering the harder question of non-ordinal outputs.

2.3.1 Ordinal Outputs

Tumer and Ghosh [16, 13] provided a theoretical framework for analysing the simple averaging
combination rule when our predictor outputs are estimates of the posterior probabilities of each
class, as in figure 3.

For a one dimensional feature vector x, the solid curves show the true posterior probabilities of
classes a and b, these are P (a) and P (b), respectively. The dotted curves show estimates of the
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Figure 3: Tumer & Ghosh’s framework [16, 13] for analysing classifier error

posterior probabilities, from one of our predictors, these are P̂ (a) and P̂ (b). The solid vertical line
at x∗ indicates the optimal decision boundary, that is the boundary that will minimise error given
that our posterior probabilities overlap. This overlap, the dark shaded area, is termed the Bayes
error, and is an irreducible quantity. The dotted vertical line at x̂∗ indicates the boundary placed
by our predictor, which is a certain distance from the optimal. The light shaded area indicates the
added error that our predictor makes in addition to the Bayes error. The individual predictor i

approximates the posterior probability of class a as:

P̂i(a|x) = P (a|x) + ηi(a|x) (12)

where P (a|x) is the true posterior probability of class a and ηi(a|x) is the estimation error. Let us
assume the estimation errors on different classes a and b are independent and identically distributed
random variables [16, p5] with zero mean and variance σ2

ηi
. Consider the predictor’s expected added

error in distinguishing classes a and b, i.e. the expected size of the light shaded area given the
variance σ2

ηi
. This can be stated as:

Eadd,i =
2σ2

ηi

P ′(a|x) − P ′(b|x)
(13)

where P ′(a|x) is the derivative of the true posterior probability of class a. If the decision boundary
was instead placed by an ensemble of predictors, Tumer and Ghosh show the expected added error
of the ensemble estimator is:

Eens
add = Eadd

(1 + δ(M − 1)

M

)

(14)

where M is the number of classifiers. Eadd is the expected added error of the individual classifiers:
they are assumed to have the same error. The δ is a correlation coefficient (see [17] for details)
measuring the correlation between errors in approximating the posterior probabilities, therefore this
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is a direct measure of diversity1. If δ is zero, i.e. the classifiers in the ensemble are statistically
independent in their posterior probability estimates. Then we have Eens

add = 1
M Eadd, the error of the

ensemble will be M times smaller than the error of the individuals. If δ is 1, i.e. perfect correlation,
then the error of the ensemble will just be equal to the average error of the individuals.

To achieve this simple expression they assume that the errors of the different classifiers have
the same variance σ2

ηi
. Another, possibly less critical assumption is that the posterior probabilities

are monotonic around the decision boundary. This work has recently been extended by Roli and
Fumera [14, 15], allowing for some of the assumptions to be lifted, the most important of which is that
it allows for non-uniformly weighted combinations. This demonstrates that the understanding of
this particular diversity formulation (when outputting posterior probabilities) is progressing. What
seems to be a sticking point for ensemble research is the non-ordinal output case, as we will now
illustrate.

2.3.2 Non-Ordinal Outputs

In ensemble research, Hansen and Salamon [18] is seen by many as the seminal work on diversity
in neural network classification ensembles. They stated that a necessary and sufficient condition for
a majority voting2 ensemble of classifiers to be more accurate than any of its individual members
is if the classifiers are accurate and diverse. An accurate classifier is one that has an error rate of
better than random guessing, on new input. Two classifiers are diverse if they make different errors
on new data points. They used the binomial theorem to explain this; we assume that all networks
arrive at the correct classification for a given pattern with probability (1 − p), and that they make
statistically independent errors. This gives the following probability of a majority voted ensemble
being in error:

P (ensemble incorrect) =

M
∑

k>(M/2)

(

M

k

)

pk(1 − p)(M−k) (15)

This expressed the probability of ensemble error at a single testing data point. For example,
with an ensemble of 21 predictors, combined with a majority vote, there would have to be at least
11 members wrong in order for the whole ensemble to be wrong. The area under the binomial
distribution for 11 or more, and therefore the probability of the ensemble being incorrect, is 0.026.
It should be stressed though, this only applies when the predictors are statistically independent,
an assumption that is too strong to ever hold in practice, but it does represent the theoretical (if
unachievable) ideal.

Breiman [19] presents an upper bound on the error of Random Forests—ensembles of decision
trees constructed via a particular randomization technique. This is a bound on the generalisation
error, so integrated over all possible training sets:

P (ensemble generalization error) ≤ ρ̄(1 − s2)s2 (16)

where s is the ‘strength’ of the ensemble, expressed as the expected size of the margin by which
the ensemble achieves the correct labelling, and ρ̄ is the averaged pairwise correlation between Oracle

1In fact Tumer and Ghosh rely fundamentally on many of the same manipulations as used in the bias-variance-

covariance decomposition—it would be very interesting to see this link made explicit.
2They also present results for plurality voting, which turns out to be far more complex.
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outputs. Although the bound is not very tight, Kuncheva comments that it can be regarded as a
piece of “that yet missing more general theory of diversity” [20]. We will comment further on the
nature of this problem in section 4.

From this point onwards, when referring to “classification error diversity”, it can be assumed that
we are referring to this difficult task of quantifying non-ordinal output diversity. From the description
of the problem as we have clearly stated, it seems deriving an expression for classification diversity
is not as easy as it is for regression. The ideal situation would be a parallel to the regression case,
where the squared error of the ensemble can be re-expressed in terms of the squared errors of the
individuals and a term that quantifies their correlation. We would like to have an expression that
similarly decomposes the classification error rate into the error rates of the individuals and a term
that quantifies their ‘diversity’. At present, this is beyond the state of the art, however a number
of empirical investigations have gone into deriving heuristic expressions that may approximate this
unknown diversity term.

2.3.3 A Heuristic Metric for Classification Error Diversity?

A number of authors have tried to qualitatively define classification error diversity. Sharkey [21]
suggested a scheme by which an ensemble’s pattern of errors could be described in terms of a level
of diversity. It should be noted that this work concentrated on neural networks, but the ideas
are equally applicable to any type of classifier. Four levels were proposed, each one describing the
incidence and effect of coincident errors amongst the members of the ensemble and the degree to
which the target function is covered by the ensemble. A coincident error occurs when, for a given
input, more than 1 ensemble member gives an incorrect answer. Function coverage is an indication
of whether or not a test input yields a correct answer on ANY of the individuals in the ensemble.

Level 1 No coincident errors, the target function is covered. Majority vote always produces the
correct answer.

Level 2 Some coincident errors, but the majority is always correct and the function is completely
covered. The ensemble size must be greater than 4 for this to hold.

Level 3 A majority vote will not always yield the right answer, but the members of the ensemble
cover the function such that at least one always has the correct answer for a given input.

Level 4 The function is not always covered by the members of the ensemble.

Sharkey acknowledges that ensembles exhibiting level 2 or 3 diversity could be “upwardly mobile”
as it is possible that an ensemble labelled as having level 2 diversity could contain a subset of members
displaying level 1 diversity using the test set and a level 3 ensemble could contain subsets of members
displaying level 1 and/or level 2 diversity on the test set, thus removal of certain members could
result in a change of diversity level for the better.

One problem with this heuristic is that it gives no indication of how typical the error behaviour
described by the assigned diversity level is, with respect to the test data, nor does it tell us how
to generate this diversity. According to this metric for denoting error diversity, Sharkey assigns
the level which describes the worst case observed; this could happen on the basis of the ensemble
performance on only one example from the test data. For example, an ensemble could perform
consistently with level 1 diversity on most of a test dataset, then fail on only a single pattern, which
would mean that an otherwise good ensemble could be demoted to level 4 diversity. Table 1 shows
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the maximum number of classifiers allowed to be in error for a single test pattern in order for each
diversity level to hold.

Level Maximum networks in error
1 1

2 M
2 − 1 if M is even, or M−1

2 if M is odd
3 M − 1
4 M

Table 1: Maximum allowable networks in error for each of Sharkey’s diversity levels to hold on a
single test pattern.

This heuristic is therefore sufficient for illustrative purposes, but intuitively it can be seen that
a particular multi-classifier system could exhibit different diversity levels on different subsets of a
dataset. These levels may act as a better indication of the ensemble’s pattern of errors if they are
coupled with the proportions of the test data for which it performs at the described levels. Thus,
a distribution of error diversity levels observed during testing could be produced to describe the
performance of an ensemble. For example, given a test set of 100 patterns it is plausible that all 4
diversity levels could be observed, as we show in table 2. Here, for the first ensemble, 20 of the data
examples produce level 1 diversity, whereas on the second ensemble, 55 examples produce level 1,
indicating that the second ensemble has lower error.

Level 1 Level 2 Level 3 Level 4
Ensemble1 20 25 40 15
Ensemble2 55 25 15 5

Table 2: Distribution of diversity levels across a dataset (number of patterns exhibiting each level
of diversity) for two hypothetical ensembles.

According to Sharkey both of these ensembles would be assigned to level 4 diversity despite the
fact that the second ensemble performs better than the first as shown by adding in the proportions
with which the different levels of diversity occur. This suggested improvement does not, however,
give any indication as to which members of the ensemble are responsible for which proportions of
the different levels of error.

Carney and Cunningham [22] suggested an entropy-based measure, though this does not allow
calculation of an individual’s contribution to overall diversity. Zenobi and Cunningham [23] proposed
a measure of classification Ambiguity. The Ambiguity of the ith classifier, averaged over N patterns,
is

Ai =
1

N

N
∑

n=1

ai(xn) (17)
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where ai(xn) is 1 if the output of individual i disagrees with the ensemble output, and 0 otherwise.
The overall ensemble Ambiguity is:

Ā =
1

N

N
∑

n=1

1

M

M
∑

i=1

ai(xn) (18)

The vast majority of empirical evidence examining classifier diversity is due to Kuncheva [24, 25,
20, 1, 26, 27, 28, 29]. These studies have explored several measures of diversity from the numerical
taxonomy literature.

Kuncheva’s work emphasizes the existence of two styles of measuring diversity, pairwise and
non-pairwise. Pairwise measures calculate the average of a particular distance metric between all
possible pairings of classifiers in the ensemble. Which distance metric is used therefore determines
the characteristics of the diversity measure. The non-pairwise measures either use the idea of entropy
or calculate a correlation of each ensemble member with the averaged output. Among the myriad of
metrics studied was the Q-statistic, which we will now consider. Take two classifiers, fi and fj . Over
a large set of testing patterns, they will exhibit certain coincident errors, and therefore a probability
of error coincidence can be calculated. These are also referred to as the Oracle outputs. Table 3
illustrates this, assigning a label a,b,c, or d to each type of coincidence.

fi correct fj wrong
fi correct a b
fi wrong c d

Table 3: Probabilities of coincident errors between classifier fi and fj . It should be noted, by
definition, a + b + c + d = 1.

The Q statistic between classifier i and classifier j is:

Qi,j =
ad − bc

ad + bc
(19)

The Q statistic overall for an ensemble is calculated by taking the average Q-value from all
possible pairings of the ensemble members. In addition to the Q statistic, several other metrics were
examined. Extensive experimental work was conducted to find a measure of diversity that would
correlate well with majority vote accuracy. In a summary paper of her own work, Kuncheva states:

“although a rough tendency was confirmed ... no prominent links appeared between the diversity
of the ensemble and its accuracy. Diversity alone is a poor predictor of the ensemble accuracy.” [20]

An alternative measure of diversity was advocated by Margineantu and Dietterich [30], the
kappa-statistic, κ. Using the coincidence matrix as before, kappa is defined as:

κ =
2(ac − bd)

(a + b)(c + d) + (a + c)(b + d)
(20)

Margineantu and Dietterich [30] produced kappa-error plots for AdaBoost and Bagging. Each
possible pair of classifiers is plotted in a 2-D space of κ against the average error of the pair. This
showed up distinctive clouds of points that indicated a definite trade-off between individual accuracy
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and the κ measure. Comparing clouds of points for AdaBoost versus Bagging, they verified that
AdaBoost produces more diverse ensembles of classifiers.

Yet, in spite of these seemingly intuitive definitions for diversity, none has yet been proved to have
a definite link to overall ensemble error. It seems the amorphous concept of “diversity” is elusive
indeed. We have now reviewed the state of the field with regard to explanations of what the term
‘diversity of errors’ means, and why it can lead to improved ensemble performance. In conclusion,
the community puts great stead in the concept of classification error “diversity”, though it is still
an ill-defined concept. The lack of a definition for diversity has not stopped researchers attempting
to achieve it. So how do you make an effective, well-performing ensemble?

3 Towards A Taxonomy of Methods for Creating Diversity

We determined in the previous section that in both regression and classification contexts, the corre-
lation between the individual predictor outputs has a definite effect on the overall ensemble error,
though for classification it is not yet formalised in the literature. In this section we attempt to move
towards a possible way to understand the many different methods which researchers use to create
an ensemble exhibiting error diversity.

In constructing the ensemble, we may choose to take information about diversity into account,
or we may not; i.e. we may or may not explicitly try to optimise some metric of diversity during
building the ensemble. We make a distinction between these two types, explicit and implicit diversity
methods. A technique such as Bagging [10] is an implicit method, it randomly samples the training
patterns to produce different sets for each network; at no point is a measurement taken to ensure
diversity will emerge. Boosting [31] is an explicit method, it directly manipulates the training data
distributions to ensure some form of diversity in the base set of classifiers (although it is obviously
not guaranteed to be the ‘right’ form of diversity).

During learning, a function approximator follows a trajectory in hypothesis space. We would like
the individuals in our ensemble to occupy different points in that hypothesis space. While implicit
methods rely on randomness to generate diverse trajectories in the hypothesis space, explicit methods
deterministically choose different paths in the space. In addition to this high level dichotomy, there
are several other possible dimensions for ensuring diversity in the ensemble.

Sharkey [32] proposed that a neural network ensemble could be made to exhibit diversity by
influencing one of four things: the initial weights, the training data used, the architecture of the
networks, and the training algorithm used. This means providing each ensemble member with a
different training set, or a different architecture, and so on. Though at first this seems a sensible
way to group the literature, we found it difficult to group all ensemble techniques under these
umbrellas. If we add a penalty to the error function, as in [12, 33, 34], we are changing none of
Sharkey’s four factors. We instead came to the following categories upon which we believe the
majority of ensemble diversity techniques can be placed.

Starting point in Hypothesis Space Methods under this branch vary the starting points within
the hypothesis space, thereby influencing where in the space we converge to.

Set of Accessible Hypotheses These methods vary the set of hypotheses that are accessible by
the ensemble. Given that certain hypotheses may be made accessible or inaccessible with a
particular training subset and function approximator architecture, these techniques either vary
training data used, or the architecture employed, for different ensemble members.
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Traversal of Hypothesis Space These alter the way we traverse the space, thereby leading dif-
ferent networks to converge to different hypotheses.

It should of course be noted that hypothesis space and search space are not necessarily the same
thing. For neural networks, we do not search hypothesis space directly — the search space is the
space of possible weight values, which in turn causes different network behaviour. For decision trees,
the hypothesis space is directly searched as we construct the trees.

3.1 Starting Point in Hypothesis Space

Starting each network with differing random initial weights will increase the probability of continuing
in a different trajectory to other networks. This is perhaps the most common way of generating an
ensemble, but is now generally accepted as the least effective method of achieving good diversity;
many authors use this as a default benchmark for their own methods [35]. We will first discuss
implicit instances of this axis, where weights are generated randomly, and then discuss explicit
diversity for this, where networks are directly placed in different parts of the hypothesis space.

Sharkey [36] investigated the relationship between initialisation of the output weight vectors and
solutions converged upon with backpropagation. They systematically varied the initial output weight
vectors of neural networks throughout a circle of radius 10 and then trained them using the fuzzy
XOR task with a fixed set of training data. The resulting networks differed in the number of cycles
in which they took to converge upon a solution, and in whether they converged at all. However,
the trained neural networks were not found to be statistically independent in their generalisation
performance, i.e. they displayed very similar patterns of generalisation despite having been derived
from different initial weight vectors. The networks had converged to the same (or very similar) local
optima in spite of starting in different parts of the space. Thus, varying the initial weights of neural
networks, although important when using a deterministic training method such as backpropagation,
seems not to be an effective stand-alone method for generating error diversity in an ensemble of
neural networks.

These observations are supported by a number of other studies. Partridge [37, 38] conducted
several experiments on large (> 150, 000 patterns) synthetic data sets, and concludes that after
network type, training set structure, and number of hidden units, the random initialization of weights
is the least effective method for generating diversity. Parmanto, Munro and Doyle [39] used one
synthetic dataset and two medical diagnosis datasets to compare 10-fold cross-validation, Bagging,
and random weight initializations; again the random weights method comes in last place.

The methods above are implicit diversity methods for manipulating the starting point in hy-
pothesis space. There are very few explicit methods for this, where randomisation of weights does
not occur; the literature on this topic is disappointingly small. Maclin and Shavlik [40] present an
approach to initializing neural network weights that uses competitive learning to create networks
that are initialised far from the origin of weight space, thereby potentially increasing the set of
reachable local minima; they show significantly improved performance over the standard method of
initialization on two real world datasets. A relevant technique is Fast Committee Learning [41] trains
a single neural network, taking M snapshots of the state of its weights at a number of instances
during the training. The M snapshots are then used as M different ensemble members. Although
the performance was not as good as when using separately trained nets, this offers the advantage of
reduced training time as it is only necessary to train one network. A modification to this method
could be in explicitly choosing the M stopping points according to some metric.
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3.2 Set of Accessible Hypotheses

It can be argued that there are two ways to manipulate the set of hypotheses accessible to a learner:
firstly to alter the training data it receives, and secondly to alter the architecture of the learner
itself. We will now discuss these and how they have been used to create error diversity.

3.2.1 Manipulation of Training Data

Several methods attempt to produce diverse or complementary networks by supplying each learner
with a slightly different training set. This is probably the most widely investigated method of
ensemble training. Regard figure 4; the frontmost bold square represents the training set for our
ensemble. Different ensemble members can be given different parts of this set, so they will hopefully
learn different things about the same task. Some methods will divide it by training pattern, supplying
each member with all the K features, but a different subset of the rows (patterns). Other methods
will divide it by feature, supplying each member with all the N patterns in the set, but each consists
of a different subset of the columns (features). Both of these are termed resampling methods, and
could provide overlapping or non-overlapping subsets of the rows or columns (or both) to different
learners. Another alternative would be to pre-process the features in some way to get a different
representation, for example using a log-scaling of the features. This can be viewed in our diagram
as using a different plane, moving in the space of all possible features. The data techniques which
transform features are termed distortion methods [42].

N training
patterns

K features

Space of all
possible features

Figure 4: Space of possible training sets for an ensemble

Duin and Tax [43] find that combining the results of one type of classifier on different feature
sets is far more effective than combining the results of different classifiers on one feature set. They
conclude that the combination of independent information from the different feature sets is more
useful than the different approaches of the classifiers on the same data.

The most well-known resampling method is probably k-fold cross-validation [2]. By dividing the
dataset randomly into k disjoint pattern subsets, new overlapping training sets can be created for
each ensemble member, by leaving out one of these k subsets and training on the remainder. The
Bagging algorithm [10], is another example, randomly selecting N patterns with replacement from
the original set of N patterns.
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Sharkey [44, 45] uses a distortion method to re-represent some features in an engine-fault diag-
nosis task. Two classifiers are provided with the original data to learn on, while a third is provided
with the data after it has been passed through an untrained neural network. This essentially applies
a random transformation to the features, yet Sharkey shows an ensemble using this technique can
outperform an ensemble of classifiers using only the non-transformed data. Intrator and Raviv [46]
report that simply adding Gaussian noise to the input data can help. They create a bootstrap
resample, like Bagging, but then add a small amount of noise to the input vector. Several ensembles
are then trained, using weight regularisation, to get a good estimate of the generalisation error. The
process is then repeated with a different noise variance, to determine the optimal level. On test
data, they show significant improvements on synthetic and medical datasets.

So far we have discussed how the input patterns could be resampled or distorted; Breiman [47]
proposed adding noise to the outputs in the training data. This technique showed significant improve-
ments over Bagging on 15 natural and artificial datasets; however when comparing to AdaBoost [31],
no improvements were found.

We have now covered a number of papers which use randomisation of the training data to create
diversity, therefore these are all so far implicit diversity methods. We will now turn to considering
explicit methods, which deterministically change the data supplied to each network.

The very popular AdaBoost algorithm [31] explicitly alters the distribution of training data fed
to each member. The distribution is recalculated in each round, taking into account the errors of
the immediately previous network. Oza [48] presents a variant of AdaBoost that calculates the
distribution with respect to all networks trained so far. In this way the data received by each
successive network is explicitly ‘designed’ so that their errors should be diverse and compensate for
one another.

Zenobi and Cunningham [23] use their own metric of classification diversity, as defined in equation
(18) to select subsets of features for each learner. They build an ensemble by adding predictors
successively, and use their metric to estimate how much diversity is in the ensemble so far. The
feature subset used to train a predictor is determined by a hill-climbing strategy, based on the
individual error and estimated ensemble diversity. A predictor is rejected if it causes a reduction in
diversity according to a pre-defined threshold, or an increase in overall ensemble error. In this case
a new feature subset is generated and another predictor trained. The DECORATE algorithm, by
Melville and Mooney [49] utilises the same metric to decide whether to accept or reject predictors
to be added to the ensemble. Predictors here are generated by training on the original data, plus a
‘diversity set’ of artificially generated new examples. The input vectors of this set are first passed
through the current ensemble to see what its decision would be. Each pattern in the diversity set
has its output re-labelled as the opposite of whatever the ensemble predicted. A new predictor
trained on this set will therefore have a high disagreement with the ensemble, increasing diversity
and hopefully decreasing ensemble error. If ensemble error is not reduced, a new diversity set is
produced and a new predictor trained. The algorithm terminates after a desired ensemble size or a
specified number of iterations is reached.

Oza and Tumer [50] present Input Decimation Ensembles, which seeks to reduce the correlations
among individual estimators by using different subsets of the input features. Feature selection is
achieved by calculating the correlation of each feature individually with each class, then training
predictors to be specialists to particular classes or groups of classes. This showed significant benefits
on several real [51] and artificial [50] datasets. Liao and Moody [52] demonstrate an information-
theoretic technique for feature selection, where all input variables are first grouped based on their
mutual information [53, p492]. Statistically similar variables are assigned to the same group, and each
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member’s input set is then formed by input variables extracted from different groups. Experiments
on a noisy and nonstationary economic forecasting problem show it outperforms Bagging and random
selection of features.

Several authors use domain knowledge to divide features between predictors. For example,
Sharkey and Chandroth [45] use pressure and temperature information to indicate properties of an
engine; and Wan [54] combines information from the fossil record with sunspot time series data to
predict future sunspot fluctuations.

Most of the methods we have discussed manipulate input data. Dietterich and Bakiri [55] ma-
nipulate the output targets with Error-Correcting Output Coding. Each output class in the problem
is represented by a binary string, chosen such that it is orthogonal (or as close as possible) from the
representation of the other classes. For a given input pattern, a predictor is trained to reproduce the
appropriate binary string. During testing, if the string produced by the predictor does not exactly
match the string representing one of the classes, the Hamming distance is measured to each class,
and the closest is chosen. Kong and Dietterich [56] investigate why this technique works. They
find that, like Bagging, ECOC reduces the variance of the ensemble, but in addition can correct
the bias component. An important point to note for this result is that the 0-1 loss bias-variance
decomposition utilised assumes a Bayes rate of zero, i.e. zero noise.

3.2.2 Manipulation of Architectures

The number of investigations into using different types of neural network (or different types of
learners in general) in ensembles is disappointingly small. If we want diverse errors in our ensemble, it
makes sense that using different types of function approximator may produce this. Partridge [37, 57]
concludes that variation in numbers of hidden nodes is, after initial weights, the least useful method
of creating diversity in neural network ensembles, due to the methodological similarities in the
supervised learning algorithms. However, the number of hidden nodes was only varied between 8
and 12, and on a single dataset; such a limited experiment indicates there is still some work to be
done here. Partridge also used MLPs and radial basis functions in an ensemble to investigate the
effect of network type on diversity, finding this was a more productive route than varying hidden
nodes [38].

We have to consider though, that it may be the case that the problem of choosing “compatible”
network topologies to place together in an ensemble is simply too hard for a human. Opitz and
Shavlik’s Addemup algorithm [58], used an evolutionary algorithm to optimise the network topologies
composing the ensemble. Addemup trains with standard backpropagation, then selects groups of
networks with a good error diversity according to the measurement of diversity. Another recently
proposed algorithm, CNNE [59], constructively builds an ensemble, monitoring diversity during the
process. CNNE simultaneously designs the ensemble architecture along with training of individual
NNs, whilst directly encouraging error diversity. It determines automatically not only the number
of NNs in an ensemble, but also the number of hidden nodes in individual NNs. It uses incremental
training based on Negative Correlation Learning [33, 12] in training individual NNs. It is entirely
possible for an ensemble consisting of networks with very different architectures to emerge in such
incrementally constructed ensembles.

Few experiments have been done with hybrid ensembles. Wang [60] combined decision trees with
neural networks. They found that when the neural networks outnumbered the decision trees, but
there was at least one decision tree, the system performed better than any other ratio. Langdon [61]
combines decision trees with neural networks in an ensemble, and uses Genetic Programming to
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evolve a suitable combination rule. Woods [62] combines neural networks, k-nearest neighbour
classifiers, decision trees, and Quadratic Bayes classifiers in a single ensemble, then uses estimates
of local accuracy in the feature space to choose one classifier to respond to a new input pattern.

Conclusions from the studies on hybrid ensembles seem to indicate that they will produce esti-
mators with differing specialities and accuracies in different regions of the space—it seems sensible
that two systems which represent a problem and search the space in radically different ways may
show different strengths, and therefore different patterns of generalisation. This specialisation im-
plies that with hybrid ensembles, selection of a single estimator rather than fusion of the outputs of
all estimators may be more effective. The dynamic selection method by Woods et al [62] could easily
be applied to an ensemble containing networks with differing numbers of hidden nodes, having first
used an algorithm like CNNE [59] to ensure the network architectures are established appropriately.

3.3 Hypothesis Space Traversal

Given a particular search space, defined by the architecture of the network and training data pro-
vided, we could occupy any point in that space to give us a particular hypothesis. How we choose
to traverse the space of possible hypotheses determines what type of ensemble we will end up with.
We will first discuss penalty methods, where the error function of each network is warped with a
penalty term to encourage emergence of diverse hypotheses, and secondly we will mention evolution-
ary search methods, which engage in a population-based search of a landscape, and enforce diversity
within that population.

3.3.1 Penalty Methods

Some authors have found benefit from using a penalty term in the error function of a neural network
ensemble. It should be noted that this is not a regularization term in the sense of Tikhonov Reg-
ularization [63], as much previous ensemble research has shown that regularization of the learners
(smoothing the error landscape to prevent overfitting) can be detrimental. We in fact would desire
overfitting in individual learners to emerge, as this reduces the bias component of the error, leaving
the variance component to be reduced in the ensemble combination [64, 65]. Using a penalty term,
the error of network i becomes:

ei =
1

2
(fi − d)2 + λR (21)

where λ is a weighting parameter on the penalty term R. The λ parameter controls a trade-off
between the two terms; with λ = 0 we would have an ensemble with each network training with
plain backpropagation, and as λ increases more and more emphasis would be placed on minimising
whatever the penalty term is chosen to be.

Rosen [34] used a penalty term:

R =
i−1
∑

j=1

c(j, i)pi (22)

where c(j, i) is an indicator function specifying decorrelation between networks j and i, and pi

is a penalty function:
pi = (fi − d)(fj − d) (23)

the product of the ith and jth network biases. The indicator function c(j, i) specifies which networks
are to be decorrelated. To penalise a network for being correlated with the previous trained network,
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the indicator function is:

c(j, i) =

{

1 if i = j − 1,
0 otherwise.

(24)

Negative Correlation (NC) Learning [33] extended Rosen’s work by training the networks in
parallel. NC has a regularisation term:

R = pi = (fi − f̄)
∑

j 6=i

(fj − f̄) (25)

where f̄ is the average output of the whole ensemble of M networks at the previous timestep. NC
has seen a number of empirical successes [33, 66, 67], consistently outperforming a simple ensemble
system. In previous work [68] we formalised certain aspects of the NC algorithm, showing it could
be applied to any learning machine that could minimise the mean square error function, and also
defining an upper bound on its parameters. Figure 5 shows our revised version of NC, assuming a
gradient descent method is used for learning.

1. Let M be the final number of predictors required.

2. Take a training set t = {(x1, d1), ..., (xN , dN )}.

3. For each training pattern from n = 1 to N do :

(a) Calculate f̄ = 1
M

∑

i fi(xn)

(b) For each network from i = 1 to M do:

• Perform a single update for each weight in network i using:

ei = 1
2 (fi(xn) − dn)2 − γ(fi(xn) − f̄)2

∂ei

∂fi

= (fi(xn) − dn) − 2γ M−1
M (fi(xn) − f̄)

For any new testing pattern x, the ensemble output is given by:

f̄ =
1

M

∑

i

fi(x)

Figure 5: The Negative Correlation Learning Algorithm [33, 12]

NC is a particularly important technique when considering the “diversity” issue. For regression
ensembles, it has been shown [12] that NC directly controls the covariance term within the bias-
variance-covariance trade-off. Therefore it directly adjusts the amount of diversity in the ensemble.
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For classification (non-ordinal outputs, as we have described), it does not apply. It would be a
very interesting step forward for the field to see an equivalent technique for classification, directly
controlling the classification diversity term.

McKay and Abbass [69, 70] recently presented Root Quartic Negative Correlation Learning
(RTQRT), based on an alternative penalty term. The term used was:

pi =

√

√

√

√

1

M

M
∑

i=1

(fi − d)4, (26)

The RTQRT-NC technique was applied to a Genetic Programming [71] system, and shown to
outperform standard NC on larger ensembles—it is yet to be explained exactly why this is the
case. The standard mean squared error function presents a certain error landscape to an ensemble
system. NC and RTQRT add penalty terms to this, providing each learner within the ensemble with
a different landscape to work in. It has been shown that the minimisation of error in each of these
landscapes can reduce error further than using the unmodified landscape. Therefore these can be
considered as explicit diversity methods, directly encouraging convergence to different parts of the
hypothesis space.

3.3.2 Evolutionary Methods

The term “diversity” is also often used in the evolutionary computation literature, in the context
of maintaining diversity in the population of individuals you are evolving [72, 73, 74]. This has
a very different meaning to the concept of diversity as discussed in this article. In evolutionary
algorithms, we wish to maintain diversity in order to ensure we have explored a large area of the
search space and not focussed our search onto an unprofitable area. When we decide our search
has continued for long enough, we will typically take the best performing individual found so far,
ignoring the other individuals in the population. The optimal diversity in this context will be that
which optimises the explore-exploit trade off, such that the best points in the search space are found
quickly and efficiently. This is in contrast to ensemble diversity methods, which create diversity with
the intention that the ‘population’ of ensemble members will be combined. As such, evolutionary
diversity methods do not concern themselves with creating a population that is complementary in
any way, but instead with just ensuring the maximum amount of the hypothesis space is being
explored in order to find the best single individual. In spite of these differences, some researchers
have found interesting parallels. Yao and Liu [75] evolves a population of neural networks, using
fitness sharing techniques to encourage diversity, then combines the entire population as an ensemble
instead of just picking the best individual. Khare and Yao [74] extend the concept for classification
data by using the Kullback-Leibler entropy as a diversity metric to optimise during the evolutionary
search.

4 Discussion

4.1 How to Categorise Multiple Classifier Systems?

We have now concluded our categorisation of the diversity literature. We fully accept that we have
presented a rather absract taxonomy, categorising the field around very broad axes, however we
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believe a clear statement of the problem we are tackling and a clear representation of the state
of the field may help progress research. The problem of how to describe and summarise a field
concisely is a difficult one. Our categorisation is in fact the result of several prototypes, none of
which (including this one) will be entirely satisfactory for all. Ho [76] divides up the space of classifier
combination techniques into coverage optimisation and decision optimisation—the diversity creation
methods we have described would seem to come under the branch of coverage optimisation. Sharkey
[77] proposed a categorisation scheme for multi-network architectures. An architecture is categorised
on whether it is competitive or cooperative, and whether it is top-down or bottom-up. A competitive
architecture will in some fashion select a single network to give the final answer; a cooperative
architecture will fuse the outputs of all networks. An architecture is top-down if the combination
mechanism is based on something other than the network outputs. The mere fact that there are
so many equally valid ways to categorise a field pays tribute to it—the wide interdisciplinarity in
multiple classifier systems means we will always have multiple ways to divide up the space.

As a conclusion to our proposed decomposition of the field, we note one interesting family of
algorithms that all exploit the Ambiguity decomposition. Krogh and Vedelsby [2] showed that the
ensemble error could be broken down into two terms, one of which is dependent on the correlations
between networks. A number of techniques have explicitly measured Ambiguity and used it as a
guide for constructing an ensemble, being utilised in almost every aspect of ensemble construction.
Krogh and Vedelsby themselves used an active learning scheme [2], based on the method of query
by committee, selecting patterns to train on that had a large Ambiguity. This showed significant
improvements over passive learning in approximating a square wave function. In the same paper an
estimate of Ambiguity is used to optimise the ensemble combination weights; this showed in some
cases it is optimal to set a network weight to zero, essentially removing it from the ensemble.

In previous work [68] we showed that Negative Correlation learning [33] uses the Ambiguity
term as a penalty in the error function of each network. This means we can optimise ensemble
performance by tuning the emphasis on diversity in the error function used the strength parameter.
Opitz [78] selected feature subsets for the ensemble members to train on, using a Genetic Algorithm
(GA) with an Ambiguity-based fitness function; this showed gains over Bagging and Adaboost on
several classification datasets from the UCI repository. A precursor to this work was Opitz and
Shavlik’s Addemup algorithm [58], which used the same fitness function to optimise the network
topologies composing the ensemble. Interestingly, both these GA-based approaches also used a
strength parameter, λ, to vary the emphasis on diversity. The difference between their work and
NC is that NC incorporates Ambiguity into the backpropagation weight updates, while Addemup
trains with standard backpropagation, then selects networks with a good error diversity.

In summary, Ambiguity has been utilised in many ways: pattern selection [2], feature selection
[78], optimising the topologies [58] of networks in the ensemble, optimising the combination function
[2], and finally optimising the network weights themselves [68].

4.2 How to Quantify Classification Diversity?

As we stated earlier, the “diversity” problem is really one of quantifying correlation between non-
ordinal classifier outputs. There is as yet no natural analogue of the bias-variance-covariance decom-
position. A step toward understanding this question further can be taken by considering where the
bias-variance-covariance decomposition comes from: it falls neatly out of the bias-variance decom-
position of the ensemble error. However, when our classification of a data point is either correct or
incorrect, we have a zero-one loss function (instead of the usual quadratic loss function we used for



Journal of Information Fusion 6(1), 2005 22

the regression context). A number of authors have attempted to define a bias-variance decomposi-
tion for zero-one loss functions [56, 79, 80, 81], each with their own assumptions and shortcomings.
Most recently Domingos [82] and James [83] propose general definitions which include the original
quadratic loss function as a special case. This leads us naturally to ask the question, does there exist
an analogue to the bias-variance-covariance decomposition that applies for zero-one loss functions?
If so, its formulation of the “covariance” term will be a major stepping stone in our understanding
of the role of classification error diversity. The optimal classification error diversity will then be
understood in terms of this trade-off for zero-one loss functions.

5 Conclusions

In this article we reviewed the existing qualitative and quantitative explanations of what error
“diversity” is, and how it affects the error of the overall ensemble. For a clear specification of the
problem, we covered diversity in both regression and classification contexts. We described the two
most prominent theoretical results for regression ensembles: the Ambiguity decomposition and the
bias-variance-covariance decomposition. We demonstrated what we believe to be the first formal link
between these two, making it explicit how they relate. We described the current state of the art in
formalising the concept of diversity for classification ensembles, illustrating clearly that the problem
is actually one of quantifying some form of correlation between non-ordinal predictor outputs.

In the process of this we suggested a modification to an existing heuristic measure [21] of clas-
sification error diversity, that accounts for variability in the test data. We believe this allows more
fine-grained judgement about whether an ensemble is performing well. In addition, we suggested
directions to take in understanding a more formal grounding for diversity, around studies of the
bias-variance-covariance decomposition [3] and the generalised bias-variance decomposition [83] for
zero-one loss. This is the subject of our current research.

The main contribution of this article has been a thorough survey and categorisation of the
literature according to how ensemble techniques choose to encourage diversity. We dichotomised
techniques according to whether they choose to explicitly enforce diversity via some metric, or
whether they implicitly encourage diversity by randomisation methods. We then grouped techniques
according to three factors: how they initialise the learners in the hypothesis space, what the space
of accessible hypotheses is, and how that space is traversed by the learning algorithm.

Though we note that such a taxonomy is bound to be the subject of heated debate (and this
is healthy for the field) we believe this categorisation could help to identify gaps in this exciting,
rapidly expanding, field.
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