
To appear: Encyclopedia of Machine Learning, C.Sammut & G.I.Webb (Eds.), Springer Press 2010

Ensemble Learning

Gavin Brown
School of Computer Science, The University of Manchester, United Kingdom

Synonyms

Multiple classifier systems, committee machines.

Definition

Ensemble Learning refers to the procedures employed to train multiple learning machines and combine
their outputs, treating them as a “committee” of decision makers. The principle is that the committee
decision, with individual predictions combined appropriately, should have better overall accuracy, on
average, than any individual committee member. Numerous empirical and theoretical studies have
demonstrated that ensemble models very often attain higher accuracy than single models.

The members of the ensemble might be predicting real-valued numbers, class labels, posterior
probabilities, rankings, clusterings, or any other quantity. Therefore, their decisions can be combined
by many methods, including averaging, voting, and probabilistic methods. The majority of ensemble
learning methods are generic, applicable across broad classes of model types and learning tasks.

Motivation and Background

If we could build the “perfect” machine learning device, one which would give us the best possible
answer every time, there would be no need for ensemble learning methods—indeed, there would be no
need for this encyclopedia either. The underlying principle of ensemble learning is a recognition that
in real-world situations, every model has limitations and will make errors. Given that each model will
have these ‘limitations’ the aim of ensemble learning is to manage their strengths and weaknesses,
leading to the best possible decision being taken overall. Several theoretical and empirical results have
shown that the accuracy of an ensemble can significantly exceed that of a single model.

The principle of combining predictions has been of interest to several fields over many years. Over
200 years ago, a controversial question had arisen, on how best to estimate the mean of a probability
distribution given a small number of sample observations. Pierre-Simon de Laplace [6] demonstrated
that the sample mean was not always optimal: under a simple condition, the sample median was a
better combined predictor of the population mean. The financial forecasting community has analyzed
model combination for several decades, in the context of stock portfolios. The contribution of the
Machine Learning (ML) community emerged in the 1990s—automatic construction (from data) of
both the models and the method to combine them. While the majority of the ML literature on this
topic is from 1990 onward, the principle has been explored briefly by several independent authors since
the 1960s—see [15] for historical accounts.

The study of ensemble methods, with model outputs considered for their abstract properties rather
than the specifics of the algorithm which produced them, allows for a wide impact across many fields
of study. If we can understand precisely why, when, and how particular ensemble methods can be
applied successfully, we will have made progress toward a powerful new tool for Machine Learning:
the ability to automatically exploit the strengths and weaknesses of different learning systems.
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Methods and Algorithms

An ensemble consists of a set of models and a method to combine them. We begin this section by
assuming we have a set of models, generated by any of the learning algorithms in this encyclopedia;
we explore popular methods of combining their outputs, for classification and regression problems.
Following this, we review some of the most popular ensemble algorithms, for learning a set of models
given the knowledge that they will be combined, including extensive pointers for further reading. Fi-
nally, we take a theoretical perspective, and review the concept of ensemble diversity, the fundamental
property which governs how well an ensemble can perform.

Methods for Combining a Set of Models

There exist numerous methods for model combination, far too many to fully detail here. The linear
combiner, the product combiner, and the voting combiner are by far the most commonly used in
practice. Though a combiner could be specifically chosen to optimize performance in a particular
application, these three rules have shown consistently good behavior across many problems, and are
simple enough that they are amenable to theoretical analysis.

The linear combiner is used for models that output real-valued numbers, so is applicable for
regression ensembles, or for classification ensembles producing class probability estimates. Here we
only show notation for the latter case. We have a model ft(y|x), an estimate of the probability of
class y given input x. For a set of these, t = {1...T}, the ensemble probability estimate is,

f̄(y|x) =
T∑
t=1

wtft(y|x). (1)

If the weights wt = 1
T ,∀t, this is a simple uniform averaging of the probability estimates. The notation

clearly allows for the possibility of a non-uniformly weighted average. If the classifiers have different
accuracies on the data, a non-uniform combination could in theory give a lower error than a uniform
combination. However, in practice, the difficulty of estimating the w parameters without overfitting,
and the relatively small gain that is available (see [15, p282]), have meant that in practice the uniformly
weighted average is by far the most commonly used. A notable exception, to be discussed later in
this article, is the Mixture of Experts paradigm—in MoE, weights are non-uniform, but are learnt and
dependent on the input value x. An alternative combiner is the product rule:

f̄(y|x) =
1
Z

T∏
t=1

ft(y|x)wt . (2)

Where Z is a normalization factor to ensure f̄ is a valid distribution. Note that Z is not required
to make a valid decision, as the order of posterior estimates will remain unchanged before/after
normalization. Under the assumption that the class-conditional probability estimates are independent,
this is the theoretically optimal combination strategy. However, this assumption is highly unlikely to
hold in practice, and again the weights w are difficult to reliably determine. Interestingly, the linear
and product combiners are in fact special cases of the generalized mean [15] allowing for a continuum
of possible combining strategies.

The linear and product combiners are applicable when our models output real-valued numbers.
When the models instead output class labels, a majority (or plurality) vote can be used. Here, each
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classifier votes for a particular class, and the class with the most votes is chosen as the ensemble
output. For a two-class problem the models produce labels, ht(x) ∈ {−1,+1}. In this case the
ensemble output for the voting combiner can be written

H(x) = sign
( T∑
t=1

wtht(x)
)
. (3)

The weights w can be uniform for a simple majority vote, or non-uniform for a weighted vote.
We have discussed only a small fraction of the possible combiner rules. Numerous other rules exist,

including methods for combining rankings of classes, and unsupervised methods to combine clustering
results. For details of the wider literature, see references [15] or [18].

Algorithms for Learning a Set of Models

If we had a committee of people taking decisions, it is self-evident that we would not want them
all to make the same bad judgements at the same time. With a committee of learning models, the
same intuition applies: we will have no gain from combining a set of identical models. We wish the
models to exhibit a certain element of “diversity” in their group behavior, though still retaining good
performance individually.

We therefore make a distinction between two types of ensemble learning algorithms, those which
encourage diversity implicitly, and those which encourage it explicitly. The vast majority of ensemble
methods are implicit, in that they provide different random subsets of the training data to each learner.
Diversity is encouraged ‘implicitly’ by random sampling of the data space: at no point is a measurement
taken to ensure diversity will emerge. The random differences between the datasets might be in the
selection of examples (the Bagging algorithm), the selection of features (Random Subspaces [9] or
Rotation Forests [20]), or combinations of the two (the Random Forests [2] algorithm). Many other
‘randomization’ schemes are of course possible.

An alternative is to explicitly encourage diversity, constructing each ensemble member with some
measurement ensuring it is substantially different from the other members. Boosting algorithms
achieve this by altering the distribution of training examples for each learner such that it is encouraged
to make more accurate predictions where previous predictors have made errors. The DECORATE
algorithm [17] explicitly alters the distribution of class labels, such that successive models are forced
to learn different answers to the same problem. Negative Correlation Learning (see [3, 4]), includes a
penalty term when learning each ensemble member, explicitly managing the accuracy-diversity trade-
off.

In general, ensemble methods constitute a large class of algorithms—some based on heuristics, some
based on sound learning-theoretic principles. Here we review three algorithms that have received the
most attention in the literature. It should be noted that we present only the most basic form of each;
numerous modifications have been proposed for a variety of learning scenarios. As further study the
reader is referred to the many comprehensive surveys of the field [4, 15, 18].

Bagging

In the Bagging algorithm [1], each member of the ensemble is constructed from a different training
dataset, and the predictions combined either by uniform averaging or voting over class labels. Each
dataset is generated by sampling from the total N data examples, choosing N items uniformly at
random with replacement. Each sample is known as a bootstrap; the name Bagging is an acronym
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derived from Bootstrap AGGregatING. Since a bootstrap samples N items uniformly at random
with replacement, the probability of any individual data item not being selected is p = (1− 1

N )N .
Therefore with large N , a single bootstrap is expected to contain approximately 63.2% of the original
set, while 36.8% of the originals are not selected.

Like many ensemble methods, Bagging works best with unstable models, that is those that produce
differing generalization behavior with small changes to the training data. These are also known as
high variance models, examples of which are Decision Trees and Neural Networks. Bagging therefore
tends not to work well with very simple models. In effect, Bagging samples randomly from the space
of possible models to make up the ensemble—with very simple models the sampling produces almost
identical (low diversity) predictions.

Despite its apparent capability for variance reduction, situations have been demonstrated where
Bagging can converge without affecting variance (see [4]). Several other explanations have been pro-
posed for Bagging’s success, including links to Bayesian Model Averaging. In summary it seems that
several years from its introduction, despite its apparent simplicity, Bagging is still not fully understood.

Algorithm 1 Bagging
Input: Required ensemble size T
Input: Training set S = {(x1, y1), (x2, y2), ..., (xN , yN )}
for t = 1 to T do

Build a dataset St, by sampling N items, randomly with replacement from S.
Train a model ht using St, and add it to the ensemble.

end for
For a new testing point (x′, y′),
If model outputs are continuous, combine them by averaging.
If model outputs are class labels, combine them by voting.

Adaboost

Adaboost [7] is the most well known of the Boosting family of algorithms [24]. The algorithm trains
models sequentially, with a new model trained at each round. At the end of each round, mis-classified
examples are identified and have their emphasis increased in a new training set which is then fed back
into the start of the next round, and a new model is trained. The idea is that subsequent models
should be able to compensate for errors made by earlier models.

Adaboost occupies somewhat of a special place in the history of ensemble methods. Though the
procedure seems heuristic, the algorithm is in fact grounded in a rich learning-theoretic body of
literature. Schapire [22] addressed a question posed by Kearns and Valiant [11] on the nature of two
complexity classes of learning problems. The two classes are strongly learnable and weakly learnable
problems. Schapire showed that these classes were equivalent; this had the corollary that a weak model,
performing only slightly better than random guessing, could be “boosted” into an arbitrarily accurate
strong model. The original Boosting algorithm was a proof by construction of this equivalence, though
had a number of impractical assumptions built-in. The Adaboost algorithm [7] was the first practical
Boosting method. The authoritative historical account of the development can be found in reference
[23], including discussion of numerous variants and interpretations of the algorithm. The procedure
is shown in Algorithm 2. Some similarities with Bagging are evident; a key differences is that at each
round t, Bagging has a uniform distribution Dt, while Adaboost adapts a non-uniform distribution.

4



To appear: Encyclopedia of Machine Learning, C.Sammut & G.I.Webb (Eds.), Springer Press 2010

Algorithm 2 Adaboost
Input: Required ensemble size T
Input: Training set S = {(x1, y1), (x2, y2), ..., (xN , yN )}, where yi ∈ {−1,+1}
Define a uniform distribution D1(i) over elements of S.
for t = 1 to T do

Train a model ht using distribution Dt.
Calculate εt = PDt(ht(x) 6= y)
If εt ≥ 0.5 break
Set αt = 1

2 ln
(

1−εt
εt

)
Update Dt+1(i) = Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor so that Dt+1 is a valid distribution.
end for
For a new testing point (x′, y′),
H(x′) = sign

(∑T
t=1 αtht(x

′)
)

The ensemble is constructed by iteratively adding models. Each time a model is learnt, it is checked
to ensure it has at least εt < 0.5, that is, it has performance better than random guessing on the data it
was supplied with. If it does not, either an alternative model is constructed, or the loop is terminated.
After each round, the distribution Dt is updated to emphasize incorrectly classified examples. The
update causes half the distribution mass of Dt+1 to be over the examples incorrectly classified by
the previous model. More precisely,

∑
ht(xi)6=yi

Dt+1(i) = 0.5. Thus, if ht has an error rate of 10%,
then examples from that small 10% will be allocated 50% of the next model’s training ‘effort’, while
the remaining examples (those correctly classified) are underemphasized. An equivalent (and simpler)
writing of the distribution update scheme is to multiply Dt(i) by 1

2(1−εt) if ht(xi) is correct, and by
1

2εt
otherwise.

The updates cause the models to sequentially minimize an exponential bound on the error rate.
The training error rate on a data sample S drawn from the true distribution D obeys the bound,

Px,y∼S(yH(x) < 0) ≤
T∏
t=1

2
√
εt(1− εt). (4)

This upper bound on the training error (though not the actual training error) is guaranteed to decrease
monotonically with T , given εt < 0.5.

In an attempt to further explain the performance of Boosting algorithms, Schapire also developed
bounds on the generalization error of voting systems, in terms of the voting margin, the definition
of which was given in eq (10). Note that this is not the same as the geometric margin, optimized
by Support Vector Machines. The difference is that the voting margin is defined using the one-norm
||w||1 in the denominator, while the geometric margin uses the two-norm ||w||2. While this is a subtle
difference, it is an important one, forming links between SVMs and Boosting algorithms—see Rätsch
et al. [19] for details. The following bound holds with probability 1− δ,

Px,y∼D(H(x) 6= y) ≤ Px,y∼S(yH(x) < θ) + Õ
(√ d

Nθ2
− ln δ

)
, (5)

where the Õ notation hides constants and logarithmic terms, and d is the VC-dimension of the model
used. Roughly speaking, this states that the generalization error is less than or equal to the training
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error plus a term dependent on the voting margin. The larger the minimum margin in the training
data, the lower the testing error. The original bounds have since been significantly improved, see
Koltchinskii [12] as a comprehensive recent work. We note that this bound holds generally for any
voting system, and is not specific to the Boosting framework.

The margin-based theory is only one explanation of the success of Boosting algorithms. Mease
& Wyner [16] present a discussion of several questions on why and how Adaboost succeeds. The
subsequent 70 pages of discussion demonstrate that the story is by no means simple. The conclusion
is, while no single theory can fully explain Boosting, each provides a different part of the still unfolding
story.

Mixtures of Experts

The Mixtures of Experts architecture is a widely investigated paradigm for creating a combination of
models [10]. The principle underlying the architecture is that certain models will be able to ‘specialize’
to particular parts of the input space. It is commonly implemented with a Neural Network as the base
model, or some other model capable of estimating probabilities. A Gating network receives the same
inputs as the component models, but its outputs are used as the weights for a linear combiner. The
Gating network is responsible for learning the appropriate weighted combination of the specialized
models (“experts”) for any given input. In this way the input space is ‘carved-up’ between the
experts, increasing and decreasing their weights for particular examples. In effect, a Mixture of
Experts explicitly learns how to create expert ensemble members in different portions of the input
space, and select the most appropriate subset for a new testing example.

Expert 1

Expert 2

Expert 3

input
output

Gating net

Figure 1: The Mixtures of Experts architecture

The architecture has received wide attention, and has a strong following in the probabilistic modeling
community, where it may go under the pseudonym of a “mixture model”. A common training method
is the Expectation-Maximization algorithm.
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Theoretical Perspectives: Ensemble Diversity

We have seen that all ensemble algorithms in some way attempt to encourage “diversity”. In this
section, we take a more formalized perspective, to understand what is meant by this term.

What is Diversity?

The optimal “diversity” is fundamentally a credit assignment problem. If the committee as a whole
makes an erroneous prediction, how much of this error should be attributed to each member? More
precisely, how much of the committee prediction is due to the accuracies of the individual models, and
how much is due to their interactions when they were combined? We would ideally like to re-express
the ensemble error as two distinct components: a term for the accuracies of the individual models,
plus a term for their interactions, i.e. their diversity.

It turns out that this so-called accuracy-diversity breakdown of the ensemble error is not always
possible, depending on the type of error function, and choice of combiner rule. It should be noted that
when ‘diversity’ is referred to in the literature, it is most often meant to indicate classification with
a majority vote combiner, but for completeness we address the general case here. In the following
sections we will describe the existing work to understand diversity in three distinct cases: for regression
tasks (a linear combiner), and classification tasks, with either a linear combiner or a voting combiner.

Regression Error with a Linear Combination Rule

In a regression problem, it is common to use the squared error criterion. The accuracy-diversity
breakdown for this case (using a linear combiner) is called the Ambiguity Decomposition [13]. The
result states that the squared error of the linearly combined ensemble, f̄(x), can be broken into a sum
of two components:

(
f̄(x)− d

)2
=

1
T

T∑
t=1

(
ft(x)− d

)2
− 1
T

T∑
t=1

(
ft(x)− f̄(x)

)2
. (6)

The first term on the right hand side is the average squared error of the individual models, while
the second term quantifies the interactions between the predictions. Note that this second term, the
“ambiguity”, is always positive. This guarantees that, for an arbitrary data point, the ensemble
squared error is always less than or equal to the average of the individual squared errors.

The intuition here can be understood as follows. Imagine five friends, playing “guess the weight of
the cake” (an old English fairground game): if a player’s guess is close enough to the true weight, they
win the cake. Just as they are about to play, the fairground manager states that they can only submit
one guess. The dilemma seems to be in whose guess they should submit—however, the Ambiguity
decomposition shows us that taking the average of their guesses, and submitting that, will always be
closer (on average) than choosing a person at random and submitting their guess. Note that this is
qualified with “on average”—it may well be that one of the predictions will in fact be closer than the
average prediction, but we presume we have no way of identifying which prediction to choose, other
than random. It can be seen that greater diversity in the predictions (i.e. a larger ambiguity term)
will result in a larger gain over the average individual performance. However it is also clear that there
is a trade-off to be had: too much diversity and the average error will be extremely large.

The idea of a trade-off between these two terms is reminiscent of the Bias-Variance decomposition
[8]; in fact, there is a deep connection between these results. Taking the expected value of eq(6)
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over all possible training sets gives us the ensemble analogy to the bias-variance decomposition, called
the Bias-Variance-Covariance decomposition [27]. This shows that the expected squared error of an
ensemble f̄(x) from a target d is:

ED{(f̄(x)− d)2} = bias2 +
1
T

var +

(
1− 1

T

)
covar, (7)

where the expectation is with respect to all possible training datasets D. While the bias and variance
terms are constrained to be positive, the covariance between models can become negative—thus the
definition of diversity emerges as an extra degree of freedom in the bias-variance dilemma. This extra
degree of freedom allows an ensemble to approximate functions that are difficult (if not impossible)
to find with a single model. See reference [4] for extensive further discussion of this concept.

Classification Error with a Linear Combination Rule

In a classification problem, our error criterion is the misclassification rate, also known as the zero-one
loss function. For this type of loss, it is well known there is no unique definition of bias-variance;
instead there exist multiple decompositions each with advantages and disadvantages (see [15, pg224]).
This gives us a clue as to the situation with an ensemble—there is also no simple accuracy-diversity
separation of the ensemble classification error. Classification problems can of course be addressed
either by a model producing class probabilities (where we linearly combine), or directly producing
class labels (where we use majority vote). Partial theory has been developed for each case.

For linear combiners, there exist theoretical results that relate the correlation of the probability esti-
mates to the ensemble classification error. Tumer & Ghosh [26] showed that the reducible classification
error (i.e. above the Bayes rate) of a simple averaging ensemble, eave, can be written as

eave = eadd

(1 + δ(T − 1)
T

)
(8)

where eadd is the classification error of an individual model. The δ is a correlation coefficient between
the model outputs. When the individual models are identical, the correlation is δ = 1. In this case
the ensemble error is equal to the individual error, eave = eadd. When the models are statistically
independent, δ = 0, and the ensemble error is a fraction 1

T of the individual error, eave = 1
T eadd.

When δ is negative, the models are negatively correlated, and the ensemble error is lower than the
average individual error. However eq(8) is derived under quite strict assumptions, holding only for a
local area around the decision boundary, and ultimately resting on the bias-variance-covariance theory
from regression problems. Further details, including recent work to lift some of the assumptions, can
be found in reference [15].

Classification Error with a Voting Combination Rule

The case of a classification problem with a majority vote combiner is the most challenging of all.
In general there is no known breakdown of the ensemble classification error into neat accuracy and
diversity components. The simplest intuition to show that correlation between models does affect per-
formance is given by the Binomial theorem. If we have T models each with identical error probability
p = P (ht(x) 6= y), assuming they make statistically independent errors, the following error probability
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of the majority voting committee holds,

P (H(x) 6= y) =
T∑

k>(T/2)

(
T

k

)
pk(1− p)(T−k). (9)

For example, in the case of T = 21 ensemble members, each with error p = 0.3, the majority
voting error will be 0.026, an order of magnitude improvement over the individual error. However,
this only holds for statistically independent errors. The correlated case is an open problem. Instead,
various authors have proposed their own heuristic definitions of diversity in majority voting ensembles.
Kuncheva [15] conducted extensive studies of several suggested diversity measures; the conclusion was
that “no measure consistently correlates well with the majority vote accuracy”. In spite of this, some
were found useful as an approximate guide to characterize performance of ensemble methods, though
should not be relied upon as the ‘final word’ on diversity. Kuncheva’s recommendation in this case is
the Q-statistic [15, pg299], due to its simplicity and ease of computation.

Breiman [2] took an alternative approach, deriving not a separation of error components, but a
bound on the generalization error of a voting ensemble, expressed in terms of the correlations of the
models. To understand this, we must introduce concept of voting margin. The voting margin for a
two-class problem, with y ∈ {−1,+1}, is defined,

m =
yt
∑T

t=1wtht(x)∑T
t=1 |wt|

= yH(x). (10)

If the margin is positive, the example is correctly classified, if it is negative, the example is incorrectly
classified. The expected margin s = ED{m} measures the extent to which the average number of votes
for the correct class exceeds the average vote for any other class, with respect to the data distribution
D. The larger the voting margin, the more confidence in the classification. Breiman’s bound shows,

PD(H(x) 6= y) = PD(yH(x) < 0) ≤ ρ̄(1− s2)
s2

. (11)

Here ρ̄ is the average pairwise correlation between the errors of the individual models. Thus, the
generalization error is minimized by a small ρ̄, and an s as close to 1 as possible. The balance between
a high accuracy (large s) and a high diversity (low ρ̄) constitutes the tradeoff in this case, although
the bound is quite loose.

Summary

In summary, the definition of diversity depends on the problem. In a regression problem, the optimal
diversity is the trade-off between the bias, variance and covariance components of the squared error.
In a classification problem, with a linear combiner, there exists partial theory to relate the classifier
correlations to the ensemble error rate. In a classification problem with a voting combiner, there is
no single theoretical framework or definition of diversity. However, the lack of an agreed definition of
diversity has not discouraged researchers from trying to achieve it, nor has it stalled the progress of
effective algorithms in the field.
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Conclusions & Current Directions in the Field

Ensemble methods constitute some of the most robust and accurate learning algorithms of the past
decade [5]. A multitude of heuristics have been developed for randomizing the ensemble parameters, to
generate diverse models. It is arguable that this line of investigation is nowadays rather oversubscribed,
and the more interesting research is now in methods for non-standard data. Cluster Ensembles [25] are
ensemble techniques applied to unsupervised learning problems. Problems with non-stationary data,
also known as concept drift, are receiving much recent attention [14]. The most up to date innovations
are to be found in the biennial International Workshop on Multiple Classifier Systems [21].

Recommended Reading

Reference [15] is the standard reference in the field, which includes references to many further recom-
mended readings. In addition, references [4, 18] provide extensive literature surveys. Reference [21] is
an international workshop series dedicated to ensemble learning.
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Title: Adaboost

Synonyms: None

Definition

Adaboost is an Ensemble Learning technique, and the most well-known of the Boosting family of
algorithms. The algorithm trains models sequentially, with a new model trained at each round. At
the end of each round, mis-classified examples are identified and have their emphasis increased in a
new training set which is then fed back into the start of the next round, and a new model is trained.
The idea is that subsequent models should be able to compensate for errors made by earlier models.
See Ensemble Learning for full details.
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Title: Bagging

Synonyms: None

Definition

Bagging is an Ensemble Learning technique. The name ‘Bagging’ is an acronym derived from Bootstrap
AGGregatING. Each member of the ensemble is constructed from a different training dataset. Each
dataset is a bootstrap sample from the original. The models are combined by a uniform average or
vote. Bagging works best with Unstable learners, that is those that produce differing generalization
patterns with small changes to the training data. Bagging therefore tends not to work well with linear
models. See Ensemble Learning for more details.
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Title: Bias-Variance decomposition

Definition

The bias-variance decomposition is a useful theoretical tool to understand the performance charac-
teristics of a learning algorithm. The following discussion is restricted to the use of squared loss as
the performance measure, although similar analyses have been undertaken for other loss functions.
The case receiving most attention is the zero-one loss (i.e. classification problems), in which case the
decomposition is non-unique and a topic of active research. See reference [1] for details.

The decomposition allows us to see that the mean squared error of a model (generated by a particular
learning algorithm) is in fact made up of two components. The bias component tells us how accurate
the model is, on average across different possible training sets. The variance component tells us how
sensitive the learning algorithm is to small changes in the training set.

Figure 2: The bias-variance decomposition is like trying to hit the bullseye on a dartboard. Each dart is
thrown after training our ‘dart-throwing’ model in a slightly different manner. If the darts vary wildly,
the learner is high variance. If they are far from the bullseye, the learner is high bias. The ideal is
clearly to have both low bias and low variance; however this is often difficult, giving an alternative
terminology as the bias-variance ‘dilemma’. (Dartboard analogy from reference [3].)

Mathematically, this can be quantified as a decomposition of the mean squared error function. For a
testing example {x, d}, the decomposition is:

ED{(f(x)− d)2} = (ED{f(x)} − d)2 + ED{(f(x)− ED{f(x)})2}
MSE = bias2 + variance

where the expectations are with respect to all possible training sets. In practice this can be estimated
by cross-validation over a single finite training set, enabling a deeper understanding of the algorithm
characteristics. For example, efforts to reduce variance often cause increases in bias, and vice-versa. A
large bias and low variance is an indicator that a learning algorithm is prone to overfitting the model.
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Title: Bias-Variance-Covariance decomposition

Definition

The Bias-Variance-Covariance decomposition is a theoretical result underlying Ensemble Learning
algorithms. It is an extension of the Bias-Variance decomposition, for linear combinations of models.
The expected squared error of the ensemble f̄(x) from a target d is:

ED{(f̄(x)− d)2} = bias2 +
1
T

var +

(
1− 1

T

)
covar.

The error is composed of the average bias of the models, plus a term involving their average variance,
and a final term involving their average pairwise co-variance. This shows that while a single model
has a two-way bias-variance tradeoff, an ensemble is controlled by a three-way tradeoff. This ensemble
tradeoff is often referred to as the accuracy-diversity dilemma for an ensemble. See Ensemble Learning
for more details.
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Title: Boosting

Synonyms: None

Definition

Boosting is a family of Ensemble Learning methods. The Boosting framework is an answer to a ques-
tion posed on whether two complexity classes of learning problems are equivalent: strongly learnable,
and weakly learnable. The Boosting framework is a proof by construction that the answer is positive,
they are equivalent. The framework allows a “weak” model, only slightly better than random guess-
ing, to be boosted into an arbitrarily accurate strong model. Adaboost is the most well known and
successful of the Boosting family, though there exist many variants specialized for particular tasks,
such as cost-sensitive and noise-tolerant versions. See Ensemble Learning for full details.
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Title: Cluster Ensembles

Synonyms: None

Definition

Cluster Ensembles are an unsupervised Ensemble Learning method. The principle is to create multiple
different clusterings of a dataset, possibly using different algorithms, then aggregate the opinions of
the different clusterings into an ensemble result. The final ensemble clustering should be in theory
more reliable than the individual clusterings.
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Title: Error Correcting Output Codes

Synonyms: ECOC

Definition

Error Correcting Output Codes are an Ensemble Learning technique. It is applied to a problem with
multiple classes, decomposing it into several binary problems. Each class is first encoded as a binary
string of length T , assuming we have T models in the ensemble. Each model then tries to separate a
subset of the original classes from all the others. For example, one model might learn to distinguish
‘class A’ from ‘not class A’. After the predictions, with T models we have a binary string of length T .
The class encoding that is closest to this binary string (using Hamming distance) is the final decision
of the ensemble.
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Title: Negative Correlation Learning

Synonyms: NC-learning, NCL

Definition

Negative Correlation Learning [1] is an Ensemble Learning technique. It can be used for regression or
classification problems, though with classification problems the models must be capable of producing
posterior probabilities. The model outputs are combined with a uniformly weighted average. The
squared error is augmented with a penalty term which takes into account the diversity of the ensemble.
The error for the ith model is,

E(fi(x)) =
1
2

(
fi(x)− d

)2
− λ

(
fi(x)− f̄(x)

)2
. (12)

The coefficient λ determines the balance between optimizing individual accuracy, and optimizing
ensemble diversity. With λ = 0, the models are trained independently, with no emphasis on diversity.
With λ = 1, the models are tightly coupled, and the ensemble is trained as a single unit. Theoretical
studies [2] have shown that NC works by directly optimizing the Bias-Variance-Covariance trade-off,
thus it explicitly manages the ensemble diversity. When the complexity of the individuals is sufficient
to have high individual accuracy, NC provides little benefit. When the complexity is low, NC with a
well-chosen λ can provide significant performance improvements. Thus the best situation to make use
of the NC framework is with a large number of low accuracy models.

References

[1] Y. Liu and X. Yao, Ensemble learning via negative correlation Neural Networks, vol 12(10), pp
1399-1404 (1999)

[2] G. Brown, J.L. Wyatt, and P. Tino Managing Diversity in Regression Ensembles. Journal of
Machine Learning Research, Volume 6, pp 1621-1650 (2006).

19



To appear: Encyclopedia of Machine Learning, C.Sammut & G.I.Webb (Eds.), Springer Press 2010

Title: Random Forests

Synonyms: Random Decision Forests

Definition

Random Forests is an Ensemble Learning technique. It is a hybrid of the Bagging algorithm and the
Random Subspace Method, and uses Decision Trees as the base classifier. Each tree is constructed
from a bootstrap sample from the original dataset. An important point is that the trees are not
subjected to pruning after construction, enabling them to be partially overfitted to their own sample
of the data. To further diversify the classifiers, at each branch in the tree, the decision of which feature
to split on is restricted to a random subset of size n, from the full feature set. The random subset is
chosen anew for each branching point. n is suggested to be log2(N + 1), where N is the size of the
whole feature set.
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Title: Random Subspace Method

Synonyms: RSM, Random Subspaces

Definition

The Random Subspace Method is an Ensemble Learning technique. The principle is to increase di-
versity between members of the ensemble by restricting classifiers to work on different random subsets
of the full feature space. Each classifier learns with a subset of size n, chosen uniformly at random
from the full set of size N . Empirical studies have suggested good results can be obtained with the
rule-of-thumb to choose n = N

2 features. The method is generally found to perform best when there
are a large number of features (large N), and the discriminative information is spread across them.
The method can underperform in the converse situation, when there are few informative features, and
a large number of noisy/irrelevant features. Random Forests is an algorithm combining RSM with the
Bagging algorithm, which can provide significant gains over each used separately.
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Title: Rotation Forests

Synonyms: None

Definition

Rotation Forests is an Ensemble Learning technique. It is similar to the Random Forests approach
to building decision tree ensembles. In the first step, the original feature set is split randomly into
K disjoint subsets. Next, Principal Components Analysis is used to extract n principal component
dimensions from each of the K subsets. These are then pooled, and the original data projected linearly
into this new feature space. A tree is then built from this data in the usual manner. This process is
repeated to create an ensemble of trees, each time with a different random split of the original feature
set.

As the tree learning algorithm builds the classification regions using hyperplanes parallel to the
feature axes, a small rotation of the axes may lead to a very different tree. The effect of rotating
the axes is that classification regions of high accuracy can be constructed with far fewer trees than in
Bagging and Adaboost.
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Title: Stacked Generalization

Synonyms: Stacking

Definition

Stacking is an Ensemble Learning technique. A set of models are constructed from bootstrap samples
of a dataset, then their outputs on a hold-out dataset are used as input to a ‘meta’-model. The set of
base models are called level-0, and the meta-model level-1. The task of the level-1 model is to combine
the set of outputs so as to correctly classify the target, thereby correcting any mistakes made by the
level-0 models.
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Title: Unstable Learner

Definition

An unstable learner produces large differences in generalization patterns when small changes are made
to its initial conditions. The obvious initial condition is the set of training data used—for an unstable
learner, sampling a slightly different training set produces a large difference in testing behavior. Some
models can be unstable in additional ways, for example Neural Networks are unstable with respect to
the initial weights. In general this is an undesirable property—high sensitivity to training conditions
is also known as high variance, which results in higher overall mean squared error. The flexibility
enabled by being sensitive to data can thus be a blessing or a curse. Unstable learners can however
be used to an advantage in Ensemble Learning methods, where large variance is ‘averaged out’ across
multiple learners.

Examples of unstable learners are: Neural Networks (assuming gradient descent learning), and
Decision Trees. Examples of stable learners are Support Vector Machines, K-nearest neighbor classifiers,
and Decision Stumps. It should of course be recognized that there is a continuum between ‘stable’ and
‘unstable’, and the opinion of whether something is ‘sensitive’ to initial conditions is somewhat of a
subjective one. See also Bias-Variance decomposition for a more formal interpretation of this concept.
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