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ABSTRACT
Learning Classifier Systems differ from many other classifi-
cation techniques, in that new rules are constantly discov-
ered and evaluated. This feature of LCS gives rise to an im-
portant problem, how to deal with estimates of rule accuracy
that are unreliable due to the small number of performance
samples available. In this paper we highlight the impor-
tance of this problem for LCS, summarise previous heuristic
approaches to the problem, and propose instead the use of
principles from Bayesian estimation. In particular we argue
that discounting estimates of accuracy based on inexperi-
ence must be recognised as a crucially important part of
the specification of LCS, and must be well motivated. We
present experimental results on using the Bayesian approach
to discounting, consider how to estimate the parameters for
it, and identify benefits of its use for other areas of LCS.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics

General Terms
Algorithms

Keywords
Learning Classifier Systems, Bayesian estimation, inexperi-
ence, discounting, UCS

1. INTRODUCTION
Learning Classifier Systems are online learning algorithms

that continuously discover and evaluate new classification
rules during their execution. Thus, LCS frequently must
evaluate the accuracy of classification rules that have pre-
viously matched only a few instances. An elementary un-
derstanding of probability theory tells us that estimates of
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such ‘inexperienced’ rules’ accuracy will be unreliable, due
to the small number of samples available. This feature of
LCS contrasts sharply with many other machine-learning
approaches where accuracy is only evaluated on sufficiently
large sample populations as to give a high confidence in the
predicted accuracy.

The ‘inexperience problem’ has prompted various LCS re-
searchers to implement an inexperience discounting scheme.
This scheme has typically been poorly documented (e.g. [4]
§2.3.4.4, [2]), yet its impact on performance can be highly
significant (e.g. [2]). Additionally, the motivation for the
discounting scheme is primarily heuristic in nature. In this
paper we seek to make explicit to the LCS community the
importance of dealing with inexperienced rules, so that dis-
counting schemes such as those described above firmly be-
come part of the LCS specification. We further seek an alter-
native means of performing inexperience-based discounting,
based on sound probabilistic principles, rather than purely
heuristic reasoning. Fortunately such an approach is read-
ily available from Bayesian estimation theory, and is widely
used in other areas of Machine Learning.

2. A BRIEF HISTORY OF INEXPERIENCE
DISCOUNTING IN LCS

Inexperience discounting in Learning Classifier Systems
has a long history, beginning at the latest with XCS. As
described in [4] (§2.3.4.4), in XCS Wilson made use of the
following discounting mechanism when evaluating the fit-
ness of a rule i, g(i), given some set of observations of all
classifications Di and correct classifications Ci ⊆ Di made
by the rule:

g(i) =



γf(i) if |Di| < θexp

f(i) otherwise
, (1)

with γ = 1

16
and θexp = 20; thus Wilson proposes that a

rule’s raw fitness f(i) be scaled by a factor 1

16
if it has been

evaluated on fewer than 20 instances, otherwise it is un-
modified. As this aspect of XCS is not part of the generally
accepted specification [3], from this point on in the paper we
consider another LCS, namely UCS. The same discounting
rule is used in UCS with γ = 1

100
and θexp = 10 [6], despite

unfortunately being left out of the published description of
the algorithm [2].

The above scheme introduces two additional parameters
to the LCS specification, the discount factor γ to be used,
and the inexperience threshold θexp below which it is to be
applied. It is unclear how these may be set in anything but



a heuristic, or empirical, manner. Additionally, eq. 1 intro-
duces a potentially large discontinuity into the calculation
of rule fitness.

3. BAYESIAN ESTIMATION OF RULE AC-
CURACY

In equation 1, the fitness before scaling f(i) is a function
of the accuracy of rule i. Both before and after scaling, ac-
curacy is defined based on some set of observations of the
rule’s classifications Di, of which Ci ⊆ Di are correct clas-

sifications. In UCS f(i) = |Ci|
|Di|

, i.e. the proportion of the

total number of matches that were correct classifications.
This corresponds to a maximum likelihood estimation of the
rule’s probability of success, and while it is reliable for large
|Di|, for small |Di| it may deviate substantially from the
rule’s true success probability; for small |Di| a large pro-
portion of successes is quite possible even if the rule’s true
success probability is low. Consider the example of trying
to estimate the bias of a coin by tossing it repeatedly and
observing the outcomes (this is of course what we are do-
ing in trying to estimate rule accuracy); obtaining 8 heads
out of 10 trials tells us much less about the coin’s bias than
obtaining 80 heads out of 100 trials. It is this realisation
that prompted discounting schemes such as eq. 1. How-
ever, as discussed in the previous section, an undesirable
consequence of this discounting scheme is the addition of
two parameters to the LCS specification, without principled
guidance on how to set their values. As also discussed, the
scaling function is discontinuous.

A more principled approach suggests itself, in the form of
Bayesian estimation theory. In estimating the probability of
success of a rule from a number of observations on its per-
formance, we are solving a well known statistical problem;
estimating the Bernoulli parameter of a binomial distribu-
tion. The binomial distribution is the distribution over the
number of successes from tossing a biased coin a certain
number of times; the Bernoulli parameter is the bias of this
coin. As discussed above, in our situation the rule itself cor-
responds to the biased coin just described, and its bias is its
probability of correctly classifying an arbitrary instance it is
presented with; it is this quantity that we wish to estimate.

Instead of the maximum likelihood approach, which esti-

mates rule accuracy as |C|
|D|

, we can take a Bayesian approach.

The Bayesian approach assumes a prior distribution over the
possible rule accuracies, and combines this with evidence on
the rule’s accuracy to calculate the posterior distribution of
its accuracy. Thus for some sequence of classifications D,
the distribution over the rule’s accuracy a is given in the
general case by

p(a|D) =
p(D|a)p(a)

R

p(D|a)p(a)da
, (2)

where p(D|a) is the probability density function for the ob-
served performance given the rule’s true accuracy, and p(a)
is the prior distribution over all possible rule accuracies.
Given no information about the rule syntax and the problem
at hand we might reasonably assume a uniform distribution
for p(a).

If the prior distribution p(a) is a Beta distribution with
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Figure 1: Bayesian estimate of rule accuracy for
100% successful rule given varying number of tri-
als D and uniform prior

parameters α and β, i.e.

p(a) =
aα−1(1 − a)β−1

B(α, β)
, (3)

where B(x, y) is the Beta function with parameters α and β

(a ratio of Gamma functions in the general case, a ratio of
factorials in the case of integer α and β). Then we have what
is called a conjugate prior. Then the posterior distribution
will also be a Beta distribution

p(a|D) =
an+α−1(1 − a)|D|−n+β−1

B(n + α, |D| − n + β)
. (4)

Conveniently a uniform prior distribution can be written
as a Beta distribution with parameters α = β = 1. Given
that the mean of a Beta distibution with parameters α and
β is

α

α + β
, (5)

we can calculate the mean of the posterior distribution p(a|D)
for uniform prior distribution p(a) as

|C| + 1

|D| + 2
. (6)

This is also known as the Laplace Correction.
This technique is in widespread use in other areas of Ma-

chine Learning, yet is of particular value in LCS. Its main
benefit is that, while for large numbers of observations it
asymptotically approaches the maximum likelihood estimate
of the rule’s accuracy, for small numbers of observations
(which an LCS is frequently dealing with) a much more
conservative estimate of rule accuracy is made. Unlike the
discontinuous step-function of eq. 1, eq. 6 is continuous,
and hence is referred to as a probability-smoothing tech-
nique. Assuming success in every observed trial, the Bayes
estimate of rule accuracy is plotted in figure 1 for varying
numbers of trials.

4. EXPERIMENTAL EVALUATION
We now compare the performance of our Bayesian esti-

mation approach to the näıve undiscounted LCS approach,



and to the inexperience discounting scheme of eq. 1. The
testbed for our evaluation is our own implementation1 of
UCS [1], and we evaluate its performance on two classic LCS
testbeds, the 11-bit multiplexer (11-MUX), and the Monks
UCI dataset with 5% noise (monks-3)2. UCS parameterisa-
tion was adapted from published parameters3. Tables 1 and
2 present results as Area Under Curve of classification accu-
racy after 5,000 learning iterations, with accuracy evaluated
after every 50 iterations. Means and standard deviations are
based on 20 replicates.

The results for the Bayesian approach we propose are
promising. Intriguingly, for the multiplexer the heuristic
discounting scheme of eq. 1, parameterised with γ = 1

100

and θexp = 10, is significantly outperformed by the näıve
approach of no discounting (t = 6.13, P < 0.0001, N = 20;
2-sample t-test). Bayesian discounting is in turn signifi-
cantly better than no discounting (t = −3.31, P = 0.002,
N = 20; 2-sample t-test). For the monks-3 dataset, there
is no significant difference between the performance of the
traditional and Bayesian discounting schemes (t = −0.39,
P = 0.7, N = 20; 2-sample t-test), although no discounting
is significantly outperformed by both traditional discount-
ing (t = −15.95, P < 0.001, N = 20; 2-sample t-test) and
Bayesian discounting (t = −15.94, P < 0.001, N = 20;
2-sample t-test).

11-MUX Näıve Traditional Bayes
Mean 98.54 97.81 98.83

Std. Dev. 0.25 0.47 0.29

Table 1: Mean and standard deviation for area
under curve of accuracy on 11-multiplexer. Bold
columns are significantly highest results

monks-3 Näıve Traditional Bayes
Mean 93.07 96.79 96.85

Std. Dev. 0.93 0.48 0.52

Table 2: Mean and standard deviation for area un-
der curve of accuracy on monks-3. Bold columns are
significantly highest results

5. REALISTIC PRIORS FOR RULE ACCU-
RACY

The experimental results presented above make use of an
estimation correction based on assuming a uniform prior
distribution over rule accuracy. We might argue that in the
absence of any information on the rules used and their fit
to the problem at hand, a uniform distribution is appropri-
ate. However such a distribution is actually highly unlikely,
even for the simplest and most regular of problems. To il-
lustrate this, in figure 2 we enumerate the accuracy of all
possible ternary rules on all exemplars of 11-MUX. As can

1http://www.cs.man.ac.uk/∼gbrown/ucs/
2http://www.ics.uci.edu/∼mlearn/MLRepository.html
3N = 400, v = 10, P# = 0.33333333, acc0 = 0.99, χ = 0.8,
µ = 0.05, δ = 0.1, θdel = 0.1, θGA = 25, θsub = 20, θexp =
10, γ = 0.01

be clearly seen, the distribution is non-uniform, although it
is still symmetric around mean 0.5. The experimental re-
sults of table 1 show that the uniform prior works well in
this case, however.
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Figure 2: Distribution of rule accuracy for 11-MUX

Figure 3 shows the rule accuracies of all possible ternary
rules that match at least one instance, each evaluated over
the entire monks-3 training set. Here there is a clear ma-
jority of rules having accuracy 0 or accuracy 1. We can
approximate this prior distribution of rule accuracies with a
Beta distribution with parameters α = β = 1

2
(figure 4). Us-

ing this prior and applying eqs. 4 and 5 gives us a Bayesian
estimate of rule accuracy based on |C| correct classifications
from |D| trials as

|C| + 1

2

|D| + 1
. (7)

This can be recognised as the m-estimate ([5], pp.179-180) of
accuracy with m = 1. Applying this new correction makes
no significant difference to UCS’ performance on the monks-
3 dataset however. Quite possibly the performance exhib-
ited by UCS with the traditional and Laplace corrections is
near the practical maximum that UCS can obtain on this
problem.

Some problems and datasets such as 11-MUX and monks-
3 are sufficiently small that the distribution of rule accura-
cies can be fully characterised. Of course such problems are
toy problems and not of practical interest for ‘real-world’ ap-
plications of Machine Learning. However, we may estimate
the distribution of rule accuracies for some larger problem
by sampling uniformly from the spaces of all possible rules
and instances, and parameterise our prior accordingly.

6. RULE ACCURACY AS A BERNOULLI
PARAMETER IN LCS

It is interesting to consider under what circumstances we
can treat rule accuracy as a Bernoulli parameter. In general
we can write the expected accuracy of a rule on a binary
classification problem such as those considered above as

E(a) = a1d1 + a2(1 − d1), (8)

where aj is the rule’s accuracy at classifying instances of
class j, and d1 is the proportion of all instances that belong
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Figure 3: Distribution of rule accuracy for monks-3
training set
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Figure 4: Beta distribution with parameters α = β =
0.5

to class 1. In other words the rule’s expected accuracy is a
combination of its true positive and true negative rates, and
as such is a function of both the class distribution and the
rule’s accuracy at classifying instances of each class. If a1 =
a2 then then eq. 8 simplifies nicely and the class distribution
becomes irrelevant. This seems like a reasonable simplifying
assumption. For most LCS, however, the situation is even
simpler; under most LCS representations a rule predicts a
single class for the instances it matches, hence there is only
one aj .

So far we have been considering binary classification prob-
lems. However multi-class problems are common. Yet in this
case we may still consider the rule’s accuracy as a Bernoulli
parameter by generalising eq. 8 to be

E(a) =
c

X

j=1

ajdj , (9)

where c is the number of classes in the problem and
c

X

i=1

di =

1, and then assuming a1 = . . . = ac. Again, as before, for
most LCS a single class is predicted by a rule, hence there
is only one aj to consider per rule.

We conclude, based on the above, that for traditional LCS
where each rule predicts a single class, unlike other pattern-
matching techniques such as Artificial Neural Networks, it
is valid to treat rule performance as a Bernoulli parameter
and estimate rule accuracy accordingly.

7. DISCUSSION
In this paper we have highlighted the importance for LCS

of discounting estimates of rule accuracy based on the num-
ber of samples available. In LCS, unlike many other Machine
Learning algorithms, this problem is acute because of the
continuous generation and evaluation of new rules during
learning. Hence in LCS, rules must be compared against
each other using estimates of accuracy that are based on
variable, and often small, numbers of samples. The previ-
ous approach to such ‘inexperience’ discounting described in
this paper is discontinous, heuristically motivated, and in-
troduces two additional parameters to the LCS specification
without principled guidelines for how to set them. We pro-
pose the use of a Bayesian estimation approach, commonly
used in other areas of Machine Learning. This approach
is theoretically well founded, and introduces no additional
parameters to the LCS specification in the reasonable case
of assuming all rule accuracies are equally likely. Alterna-
tively, the approach turns parameterisation of the discount-
ing scheme into a problem of fitting a known type of dis-
tribution to a population of samples of rule accuracy. Such
distribution fitting can be tackled in a principled way with
existing techniques.

One further benefit of the discounting scheme presented
here is that estimated rule accuracy for completely accurate
rules converges asymptotically to 1 with number of samples;
in other words accuracies for such rules are never estimated
to be 1. This can be of great benefit to weighting schemes for
rule combination that break down with rules of estimated
accuracy 1 (e.g. [2]).

We hope this paper will prove of value to LCS practition-
ers, by incorporating a formally justified inexperience dis-
counting scheme into the specification of any LCS applied
to supervised learning.
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