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Abstract. Ensemble methods are often used to decide on a good selec-
tion of features for later processing by a classifier. Examples of this are
in the determination of Random Forest variable importance proposed by
Breiman, and in the concept of feature selection ensembles, where the
outputs of multiple feature selectors are combined to yield more robust
results. All of these methods rely critically on the concept of feature
selection stability - similar but distinct to the concept of diversity in
classifier ensembles. We conduct a systematic study of the literature,
identifying desirable/undesirable properties, and identify a weakness in
existing measures. A simple correction is proposed, and empirical studies
are conducted to illustrate its utility.
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1 Introduction

The stability of feature selection can be seen as its sensitivity to small changes in
the input dataset. In many applications, stability of feature selection is crucial
as the user might need to identify an interpretable feature subset, e.g. when
identifying genes responsible for a disease [1]. Stable feature selection frameworks
provide more reliable feature subsets and gain in interpretability. As the output
of a feature selection algorithm (FSA) can either be a set of features, a ranking
on the features or a score on the features, there exist stability measures that
apply to each one of these cases. In this paper, we focus on the first case where
an FSA returns a feature set.

Why is measuring stability of feature selection an issue? In regression
or classification predictors, the sensitivity to changes in data is quantified exactly
in a bias-variance decomposition of the error measure (though in the classifica-
tion case this is not entirely straightforward). There is no such decomposition
that applies to feature selection. First of all, the true relevant set of features is
unknown (and strongly depends on the classifier that will be used afterwards)
which does not allow us to define the concept of bias. In the case of regression
predictors, such decomposition relies on the convexity of the squared-loss func-
tion. A stability measure will allow us to quantify the variability in the feature
sets selected by an FSA for a given dataset.
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Why do we need a new measure? Kuncheva [8] demonstrated the impor-
tance of the property of correction for chance and derived a new measure satis-
fying this property. Nevertheless, the measure proposed can only be calculated
for FSAs selecting a fixed amount of features on a given dataset. Even though
several variants of Kuncheva’s measure satisfying the property of correction for
chance have been proposed to deal with feature sets of varying cardinality [9],
[12], [14], we will show that they are flawed in the sense that they do not sat-
isfy other critical properties (e.g. they do not always return their maximal value
when the FSA always returns the same feature set or they are not bounded by
constants). Hence, we derived a generalization of Kuncheva’s stability measure
that can be used with feature sets of varying cardinality while retaining a set of
desirable properties. Examples that illustrate of the utility of these measures are
feature selection techniques using hypothesis testing, random forests or LASSO.
Indeed, when applying LASSO to different samples of the same data, there is no
guarantee that the same coefficients will be equal to 0 and hence, that a constant
number of features will be selected when different samples of the data are taken.

Applications to ensemble-based feature selection Stability of ensemble-
based feature selection has recently become area of interest [5], [3], [10], [1]. In
ensemble-based feature selection, we use a set of diverse feature selection meth-
ods to build a more robust one. A stability analysis could then be carried out
to observe the diversity (corresponding to low stability) of the different feature
selection methods within an ensemble as well as to observe the robustness (cor-
responding to high stability) of the feature selection made by the ensemble.

The remainder of the paper is structured as follows. Section 2 presents some
of the properties of the existing measures. Section 3 focuses on the measures
having the property of correction for chance for feature sets of different cardi-
nalities and highlights their weaknesses on toy examples. Section 4 proposes a
new measure having a set of identified properties and Section 5 illustrates its
utility in the context of an ensemble-based feature selection procedure.

2 Stability measures

2.1 Existing measures

To observe the robustness of an FSA to changes in the data, the FSA is applied
to K samples of the same dataset to obtain a sequence A of K feature sets.
The more similar these K feature sets will be, the more the procedure will be
said to be stable. To define stability, one common approach consists of defining
a similarity measure sim between two feature sets s1 and s2 and then to define
the stability as the average similarity over all pairs of feature sets in A. In that
case, the stability will be denoted by sim and we can express it as follows:

sim(A) =
2

K(K − 1)

K−1∑
i=1

K∑
j=i+1

sim(si, sj), (1)
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where si is the ith feature set in A. Several similarity measures have been pro-
posed in the literature. Some of the older works propose using the Jaccard index
simJ [6] (also referred as the Tanimoto distance) or the relative Hamming dis-
tance to define a similarity measure simH [4]. Let us assume that we have n
features in total. The output of an FSA can then be seen as a binary string of
length n with a 1 at the ith position if the ith feature has been selected and with
a 0 otherwise. Let’s assume that an FSA returns the following sequence A of
K = 3 feature sets:

s1 : 1 0 0 1 0 1 s2 : 1 1 0 0 0 1 s3 : 1 0 1 1 1 1 (2)

The similarity measure simH between two feature sets is defined as the number
of bits they have in common divided by the length n of the string. Therefore,
using equation 1, the resulting stability of these feature sets will be equal to:

simH(A) =
2

3(3− 1)

2∑
i=1

3∑
j=i+1

simH(si, sj) =
2

3(3− 1)

(
4

6
+

4

6
+

2

6

)
=

5

9
. (3)

Nevertheless, both these measures are subset-size-biased [8] meaning that
their values are biased by the number of features selected and hence cannot be
used consistently to compare the stability of FSAs in different settings. Indeed,
imagine that a procedure selects two identical feature sets of 8 features out of
a total of 10 features and that another procedure selects two identical feature
sets of 8 features out of a total of 100 features. Intuitively, the second procedure
is more stable, as it is less likely to have selected the exact same 8 features by
chance. For this reason, Kuncheva [8] proposed a similarity measure having the
property of correction for chance. The similarity between two feature sets of size
k can be seen as the number of features r they have in common (i.e. the size of
their intersection). As we want this measure to reflect on the true ability of the
procedure to select identical features, Kuncheva [8] proposes correcting r by the
expected size of the intersection between two feature sets of k features drawn
at random (denoted hereafter by E[r]). The size of the intersection between two
sets containing k objects each individually randomly drawn without replacement
amongst a total of n objects follows a hypergeometric distribution, and therefore

we have that E[r] = k2

n . In order to make this value comparable for different
values of k and n, Kuncheva rescales r − E[r] in [−1, 1] by dividing it by its
maximal value max(r − E[r]):

simK(s1, s2) =
r − E[r]

max(r − E[r])
=

r − E[r]

max(r)− E[r]
=

r − E[r]

k − E[r]
=

r − k2

n

k − k2

n

, (4)

where s1 and s2 are two feature sets of cardinality k and where max(r) is the
maximal possible value of r for a given k. The measure simK will hence reach
its maximal value of 1 when r = k, i.e. when the two feature sets s1 and s2 are
identical.
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2.2 Properties

By leading a thorough study of the literature, we have identified the following
set of desirable properties for a stability measure:

1. Limits. The measure should be bounded by values that do not depend on
the number of features and the cardinality of the feature sets should reach
its maximal value when the feature sets are identical.

2. Monotonicity. The measure should be an increasing function of the simi-
larity of the feature sets.

3. Correction for chance. This property allows to compare stability of FSAs
selecting a different amount of features. Positive values will be interpreted
as being more stable than an FSA selecting features at random.

4. Unconstrained on cardinality. We would like a stability measure to be
able to deal with feature sets of different cardinalities.

5. Symmetry. We would like the stability measure to be symmetrical, so that
its value does not depend on the order on which the feature sets are taken.

6. Redundancy awareness. As features can be redundant, we would like a
stability measure to reflect on the true amount of redundant information
between the feature sets.

Properties 1 to 3 were the ones identified by Kuncheva [8] and Properties 4 to 6
are the ones that we have identified by looking at the measures proposed later
on. Table 1 gives us the properties of the most commonly used existing stability
measures for FSAs returning a feature set.

1 2 3 4 5 6

simJ (Dunne et al. [4]) ! ! ! !

simH (Kalousis et al. [6]) ! ! ! !

simM (Yu et al. [13]) ! ! ! ! !

simK (Kuncheva [8]) ! ! ! !

simL (Lustgarten et al. [9]) ! ! ! !

simW (Wald et al. [12]) ! ! ! !

Average nPOG (Zhang et al. [14]) ! ! !

Average nPOGR (Zhang et al. [14]) ! ! ! !

CWrel (Somol and Novovičová [11]) ! ! ! !

γk (Kŕızek et al. [7]) ! ! !

Table 1: Properties of stability measures for FSAs outputting a feature set.

The focus of this paper is on the stability measures having the important
property of correction for chance. Even though the stability measure CWrel (in-
troduced Somol and Novovičová [11]) does not explicitly yield the property of
correction for chance, using theorem 1, we can point out that CWrel asymptot-
ically holds this property when a constant number of features is selected.
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Theorem 1. For a sequence A containing feature sets of constant cardinality,
the stability measure CWrel(A) is asymptotically equivalent to simK(A) as the
number of feature sets approaches infinity.?

All the five stability measures having the property of correction for chance
(cf Table 1) are either taken as the average pairwise similarities between the
feature sets (as in simK , simL, simW ) or as the average similarity between dis-
joint feature sets pairs (for stability measures using nPOG and nPOGR). The
nPOGR similarity measure is a generalization of the nPOG measure that at-
tempts to take into account linear feature redundancies (which is not in the scope
of this paper). The similarity measures simL, simW and nPOG are all variants
of Kuncheva’s similarity measure simK for feature sets of varying cardinalities.

3 Extensions of Kuncheva’s similarity measure

3.1 Definitions

There are three similarity measures extending Kuncheva’s similarity measure
simK for feature sets s1 and s2 of different cardinalities (respectively k1 and k2).
In this situation, the value of the expected size of the intersection for randomly
drawn feature sets becomes E[r] = k1k2

n [9]. The three measures are of the same
general form as Kuncheva’s measure simK , as they keep the numerator equal
to r − E[r]. In order to make these values comparable in different settings (i.e.
for different values of k1, k2 and n), the value of r − E[r] needs to be rescaled.
The three similarity measure extending simK are three variants of this and they
only differ in the way the numerator r − E[r] is rescaled. Note that in all these
expressions, the only variable is the size of the intersection r and that all other
terms are constants only depending on k1, k2 and n. Lustgarten et al. [9] proposes
dividing the value of the numerator by r−E[r] by its range (i.e. by its maximal
value minus its minimal value for a given k1, k2 and n):

simL(s1, s2) =
r − E[r]

max(r − E[r])−min(r − E[r])
. (5)

As E[r] is a constant only depending on k1, k2 and n, r−E[r] is a linear function
of r and hence the above equation becomes:

simL(s1, s2) =
r − E[r]

(max(r)− E[r])− (min(r)− E[r])
=

r − E[r]

max(r)−min(r)
, (6)

where max(r) and min(r) are respectively the maximal and the minimal possible
values of the size of the intersection r given k1, k2 and n. Intuitively, we can see
that the minimal size of the intersection between two feature sets is not 0. Indeed,
imagine we have a set containing k1 = 2 features, another set containing k2 = 3
features and that we have n = 4 features to select from in total. In this setting,

? Proofs of the theorems available at http://www.cs.man.ac.uk/~nogueirs
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these two sets cannot be disjoint. It can be shown that the minimal possible
value of r is equal to min(r) = max(0, k1 + k2 − n). Similarly the maximal
value of r is reached when one set is a proper subset of the other. Therefore,
the maximal value or r is equal to max(r) = min(k1, k2). Lustgarten’s measure
simL can therefore be rewritten as follows??:

simL(s1, s2) =
r − E[r]

min(k1, k2)−max(0, k1 + k2 − n)
. (7)

It can be shown that this rescaling procedure ensures a value of simL in the
interval [−1, 1]. Nevertheless, we will see through a set of examples that this
procedure does not satisfy all the desirable properties in this context.
In a similar way, Wald et al. [12] proposes rescaling the numerator by dividing
it by its maximal value:

simW (s1, s2) =
r − E[r]

max(r − E[r])
=

r − E[r]

max(r)− E[r]
=

r − k1k2

n

min(k1, k2)− k1k2

n

. (8)

By dividing the numerator by its maximal value, we are ensured that simW

will always be less than or equal to 1. Nevertheless, as the numerator can take
negative values, dividing it by the maximal value will not guarantee lower bounds
that do not depend on the constants k1, k2 and n. In fact, it can be shown that
for a given n, the minimum of simW is 1 − n (and is reached when k1 = n − 1
and k2 = 1 or vice versa). We will illustrate the importance of this with an
example in the next Section. In the measure nPOG, Zhang et al. [14] divide
the numerator either by k1 − E[r] if s1 is given as the first argument or by
k2 − E[r] otherwise; making the resulting similarity measure non-symmetrical
(i.e. nPOG(s1, s2) 6= nPOG(s2, s1)):

nPOG(s1, s2) =
r − E[r]

k1 − E[r]
=

r − k1k2

n

k1 − k1k2

n

. (9)

The non-symmetry of this measure can be problematic, as we will illustrate it in
the next Section. Also, one can notice that when the set of smaller cardinality
is given as the first argument, nPOG is equal to the simW measure, hence
inheriting its weaknesses.

3.2 Toy examples illustrating the weaknesses of the measures

To illustrate some of the missing properties of the similarity measures, we provide
four toy examples.

Example 1: Accounting for Systematic Bias in Chosen Set Size. Imag-
ine that there are 10 features to choose from. Procedure F1 chooses 7 features

?? Note that this formula corrects a typographic error in our original publication.
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deterministically, i.e. no matter what the variation in data is, the same 7 fea-
tures are returned. Intuitively, the “stability” of this procedure is maximal. It has
zero variation in its choice of feature set. Lustgarten’s measure returns a value
of simL = 0.7, whilst all other measures return 1. This is somewhat strange, and
undesirable, as we have no way to know if F1 is deterministic from the value of
simL. Furthermore, imagine procedure F2, which picks 4 features, again deter-
ministically. Lustgarten’s measure now returns 0.6, which makes procedures F1

and F2 not comparable in terms of stability. This example highlights the need
for a similarity measure that returns its maximal value as long as the feature
sets are identical, as stated in Property 1 of Section 2.

Example 2: Accounting for the set size variations. Imagine our same set
of 10 features as above. Half of the time, procedure F returns features 1 to 8,
and the other half of the time it returns features 1 and 2, i.e. a proper subset.
In this situation, Wald’s stability measure returns a maximal 1, whilst clearly
there is variation in the choice of the subset size. In fact, using Wald’s measure,
the similarity between two feature sets will always have its maximal value of
1 as long as one of the two sets is a proper subset of the other. For the other
two similarity measures, this is not the case, even though the similarities do not
decrease proportionally to the distance between the feature sets cardinalities.

Example 3: Invariance to feature set permutations. This example is the
same as the previous one where the order of the feature sets has been permuted.
Because of the non-symmetry of nPOG, the stability value returned by this
measure might not be the same as the one calculated in the previous example.
This example showcases the need for a symmetrical similarity measure as stated
in Property 5 of Section 2.

Example 4: Bounded by constants. Having minimal values that increase
linearly with n can lead to negative values of much larger amplitude than the
maximum value which is equal to 1. If we have n = 100 features in total, the
minimal value of nPOG and of simW is equal to −99 while its maximal value
is 1. When calculating the average of the similarities, such large negative values
can strongly bias the resulting stability. We can illustrate this with a simple
example. Imagine that a feature selection procedure selects 9 times features 1 to
8 in feature sets s1, s2, ...s9 and that features 9 and 10 are selected in a set s10.
When averaging over all possible pairs of similarities, the stability value of simW

is 0 which corresponds to the stability value of an FSA drawing 10 feature sets
at random, even though 9 out of the 10 feature sets considered were identical.
Another issue with minimal values depending on n is that the minimal values
will be different for two different values of n. In practice, this does not allow us
to compare the stability of an FSA on two different datasets for instance. This
shows the need for a stability measure to be bounded by constants as stated in
Property 1 of Section 2.
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4 A new similarity measure

In the light of the previous observations, we propose a new similarity measure
simN of the same general form that will rescale the numerator r − E[r] so that
its value belongs to [−1, 1]. As the numerator r − E[r] can take both negative
and positive values, one way to do so is to divide it by its maximal absolute
value as follows:

simN (s1, s2) =
r − E[r]

max (|r − E[r]|)
. (10)

Both Kuncheva’s and Wald’s similarity measures simK and simW rescale the
numerator by dividing it by its maximal value. Then, we can wonder why
Kuncheva’s similarity measure simK (defined only for k1 = k2) belongs to [−1, 1]
whereas Wald’s measure (defined for distinct values of k1 and k2) does not. In
fact, it can be shown that when k1 = k2, the maximal absolute value of the
numerator is equal to its maximal value, so that Kuncheva’s measure can be
rewritten as in theorem 2. This also proves that our proposed measure simN is
a true generalization of Kuncheva’s index as they have the same formal expres-
sion.

Theorem 2. Kuncheva’s similarity between two feature sets s1 and s2 of same
cardinality can be rewritten as follows:

simK(s1, s2) =
r − E[r]

max(|r − E[r]|)
. (11)

The maximal absolute value of a term is equal to the maximum between the
opposite of its minimum and its maximum. Therefore, simN can be rewritten
as follows:

simN (s1, s2) =
r − E[r]

max [−min(r − E[r]);max(r − E[r])]
. (12)

The only variable in simN is the size of the intersection r and all other terms
only depend on k1, k2 and n. Therefore, min(r − E[r]) = min(r) − E[r] and
max(r − E[r]) = max(r) − E[r], which gives us the following expression for
simN :

simN (s1, s2) =
r − E[r]

max [−min(r) + E[r];max(r)− E[r]]
. (13)

As explained in Section 3.1, the minimal value of r is min(r) = max(0, k1+k2−n)
and its maximal value is max(r) = min(k1, k2). Therefore, we have that:

simN (s1, s2) =
r − E[r]

max [−max(0, k1 + k2 − n) + E[r];min(k1, k2)− E[r]]

=
r − k1k2

n

max
[
−max(0, k1 + k2 − n) + k1k2

n ;min(k1, k2)− k1k2

n

] . (14)
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The resulting stability measure simN is then taken as the average pairwise sim-
ilarities as in equation 1. Let us now look at the properties of the new mea-
sure simN . As explained previously, this measure is a proper generalization of
Kuncheva’s measure simK as it matches its value for k1 = k2 = k. By con-
struction, this measure will be bounded by the constants −1 and 1 and reach
its maximal value of 1 when the two feature sets are identical. Hence it has the
Property 1 of Table 1. As outlined in the toy examples of Section 3.2, this allows
the comparison of stability values for algorithms returning different number of
features and for different values of n. It also has the Property 2 of monotonic-
ity (as it is an increasing function of the size of the intersection r between two
feature sets) and the Property 3 of correction for chance. It is invariant to fea-
ture set permutations (as it is symmetric). Figure 1 shows the maximum and
minimal values of the measure in different settings. As we can see, even though
this measure accounts for some of the set size variations, the maximum value is
not proportional to the distance between the two subset sizes k1 and k2. Finally,
this measure is the only one having Properties 1 to 5. As Kuncheva’s similarity
measure simK (as well as the measures simL, simW and nPOG), the expression
of this similarity measure only holds for values of k1 and k2 in {1, ..., n− 1}. For
completeness, we will also set the values of simN to 0 when k1 or k2 is equal to
0 or n.

Fig. 1: Maximum and minimum of simN against k1 for k2 = 6 (LEFT) and
k2 = 8 (RIGHT) when n = 10.

5 Application to feature selection by random forests

To illustrate the utility of the proposed measure, we used random forests [2]
as a feature selection procedure where a feature is selected when it is used in
at least a percentage p of the trees. We built random forests of 100 decision
trees using the mutual information as a splitting criterion. Each decision tree is
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built on a bootstrap sample of the given dataset. At each splitting point, the
decision tree was given the choice between b

√
nc features selected at random.

As p is effectively a regularization parameter on the number of features selected,
we tuned p for the different datasets so that only a certain proportion of the
features is selected. In order to model the data perturbations, either bootstrap
samples or random sub-samples can be taken [5].

num. ex. num. classes p num. feat. av. num. feat. selected

wine 178 3 0.5 13 9.8 ± 0.93

parkinsons 195 2 0.5 22 11 ± 1.7

breast 569 2 0.5 30 15 ± 1.3

sonar 208 2 0.25 60 42 ± 2.4

Table 2: Parameters of 4 datasets, where p is the regularization parameter and
where the average number of features selected using parameter p is given along
with its standard deviation.

(a) wine (b) parkinsons

(c) breast (d) sonar

Fig. 2: Stability values on 4 datasets using the different similarity values.
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Here we used K = 100 random sub-samples without replacement of the
datasets containing 90% of the total amount of examples [8]. So we built K
random forests on each one of these samples and calculated the stability of
the sequence of the K feature sets obtained. We used 4 datasets of the UCI
repository, for which the properties, the values chosen for p and the average
number of features selected are given in Table 2. Figure 2 gives us the stability
values when using the different similarity measures. We observed that on all the
datasets, the lowest stability value is obtained when using Lustgarten’s similarity
measure simL. This probably comes from the fact that simL does not always
reach its maximal value when two feature sets are identical and its maximal value
depends on the size of the feature sets selected (as observed in Toy Example 1
of Section 3.2). The stability value when using nPOG seems closer to the value
of the ones using simN and simW on the parkinsons and on the breast datasets
than in the other two datasets. As we have seen in Toy Example 3, the value
of nPOG changes when we permute the feature sets, which makes it difficult
to interpret. On the four datasets, the stability values obtained using simW

and simN are close to each other. This can be explained by the fact that in
some situations (i.e. for certain values of k1, k2 and n), the value simN will
be equal to the one of simW . Indeed, when we take a pair of feature sets s1
and s2, if we have k1, k2 and n such that −min(r) + E[r] ≤ max(r) − E[r],
the denominator of the two similarity measures becomes the same and in that
case simW (s1, s2) = simN (s1, s2). In other words, in the feature sets returned
by this procedure, only a small proportion of pairs of feature sets do not satisfy
this. We have seen in Toy Example 4 that the minimal value of simW decreases
with n and this could strongly bias the resulting stability value in some cases.
This situation happens when the feature sets are very dissimilar in both terms
of cardinality and of features selected. In the four datasets, we can observe that
this is not the case as the standard deviations of the number of features selected
by the random forests are much smaller than the total number of features.

6 Conclusion

Through a thorough study of the literature, we identified a set of desirable
properties for stability measures dealing with feature selection procedures that
return feature sets. After leading a comparative study on the measures that
have the property of correction for chance, a generalization of Kuncheva’s index
is proposed for feature selection algorithms that do not return feature sets of
constant cardinality. This new measure has all the desired properties except that
it does not take into account possible redundancy between features, which could
be the focus of future work. We illustrate a possible application of this measure
in the context of ensemble-based feature selection and exhibit the differences
obtained in the stability values using the different measures.
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