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Abstract. We investigate the theoretical links between a regression en-
semble and a linearly combined classification ensemble. First, we refor-
mulate the Tumer & Ghosh model for linear combiners in a regression
context; we then exploit this new formulation to generalise the concept
of the “Ambiguity decomposition”, previously defined only for regression
tasks, to classification problems. Finally, we propose a new algorithm,
based on the Negative Correlation Learning framework, which applies to
ensembles of linearly combined classifiers.

1 Introduction

The field of Multiple Classifier Systems (MCSs) has now firmly established itself
as able to produce state-of-the-art learning techniques. It enjoys an abundance
of heuristic methods for improving performance, though on the whole is lacking
in theoretical contributions. As such, one of the most highly cited references in
the MCS literature is Tumer & Ghosh [1]; this was the first work to show that
correlations between classifier outputs1 had a quantifiable effect on the ensemble
error. A parallel field to MCS is that of regression ensembles ; that is, ensembles
of estimators that solve a regression problem. In this field, the theoretical frame-
work is far more established and can claim a heritage as far back as Laplace [2],
or further. A central result here is the bias-variance-covariance decomposition of
the mean squared error (MSE). This illustrated that the performance of the en-
semble is critically dependent on the three-way balance between bias, variance,
and covariance; the latter accounting for correlations between estimators. This
trade-off is the analog of the often cited “diversity” in the MCS literature.

In previous work we proposed a learning algorithm, Negative Correlation (NC)
learning [3] which explicitly manages the bias-variance-covariance (diversity)
trade-off using a penalty term in the error function. In this work we extend this to
the classification domain, by clearly relating the Tumer & Ghosh model to the
bias-variance-covariance decomposition, and deriving a novel learning method
based on NC learning.
1 It should be noted that the model applies only to ensembles that average class

probability estimates—the equivalent work for ensembles using majority voting is
an outstanding question in the MCS community.
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Fig. 1. Estimating posterior probabilities shifts the ideal decision boundary x∗ by a
quantity b = xb − x∗ > 0. Misclassification error is due to irreducible error (light-grey
area) and added error (dark-grey area).

2 Background

In this section we describe the background of our research. Firstly we introduce
a framework developed by Tumer & Ghosh [1,4] for linearly combined classifiers,
and then discuss the equivalent problem in a regression framework.

2.1 Tumer & Ghosh Framework for Linearly Combined Classifiers

It is well known that for a given class k a classifier can only provide an es-
timate fk(x) of the posterior probability P (ωk|x). Therefore if we choose the
maximum probability class, non-optimal decisions are taken for patterns where
arg maxk fk(x) �= arg maxk P (ωk|x). In a series of studies [1,4] Tumer & Ghosh
analysed the case in which there is a shift of the ideal class boundary. This is
shown in Fig. 1 for a two class problem.

According to their framework, the estimated posterior probability for a class
ωi is the sum of the true posterior probability P (ωi|x) and an estimation error
εi. Under the simplifying assumptions of

– a shift of the decision boundary xb around the ideal decision boundary x∗

caused by estimation errors
– a first order approximation of the posterior probabilities
– a zero order approximation of the input space distribution x around the ideal

decision boundary x∗

they showed that the added error for a single classifier is proportional to the
square of the boundary shift b

E =
p(x∗)t

2
b2 (1)

and that the shift itself can be expressed as a function of the estimation errors
εi(xb) and εj(xb):

b =
εi (xb) − εj (xb)

t
, (2)
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where t is the difference between derivatives of posteriors at the optimal bound-
ary: t = P ′(ωj |x∗) − P ′(ωi|x∗).2

They proved that the expected added error Eadd = E{E} for a single classifier
can be decomposed in terms of the bias and variance of this shift b. The authors
then extended this to an expression of the expected added error for a simple
average combination of M classifiers, deriving an expression that accounted for
the effect of classifier correlations on the added error. As shown in Fig. 1, the
added error in (1) is just a portion of the overall misclassification error evaluated
around the decision boundary x∗.

2.2 The Regression Context

In a regression context quantifying diversity among component individuals of
an ensemble is a well defined problem. Here, the combiner function is a linear
combination (as in the Tumer & Ghosh model) and the loss function of interest
is not the classification error, but instead the MSE.

In this context, Geman et al. [6] showed that the MSE can be broken into
separate components, termed bias and variance:

E
{
(f − d)2

}
= (E {f} − d)2 + E

{
(f − E {f})2

}
(3)

where f denotes the estimator, d the target, and the expectation is with re-
spect to all possible training sets. Ueda and Nakano [7] extended this concept
for a linearly combined regression ensemble (i.e. where the estimator is f̄ =
1
M

∑M
m=1 fm), providing the bias-variance-covariance decomposition. Krogh and

Vedelsby [8] developed another important decomposition for the MSE, termed
the Ambiguity decomposition. They proved that at a single data point the MSE
can be broken into an accuracy and Ambiguity term:

(
f̄ − d

)2 =
1
M

M∑
m=1

(fm − d)2 − 1
M

M∑
m=1

(
fm − f̄

)2
. (4)

The first term is an index of the accuracy of the individuals, while the second
one characterizes diversity among individuals, being a measure of how individual
answers differ from the ensemble answer on this single data point.

What is interesting to point out is that Brown et al. [3] showed that the
expectation of the Ambiguity decomposition leads strictly to the bias-variance-
covariance decomposition, and there exists a common term which quantifies
the accuracy-diversity trade-off in this case. The diversity cannot be maximized
without affecting the accuracy of the individual components, and the often cited
‘diversity dilemma’ is in fact a three-way balance between bias, variance, and
covariance.

2 In this paper we follow the notation used by Fumera and Roli in [5].
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3 Linking the Regression and Classification Frameworks

The equivalence between the Ambiguity and the bias-variance-covariance de-
composition [9] and its exploitation through the NC framework [3] represent a
well-grounded theoretical basis for the understanding of MCSs in terms of the
accuracy-diversity trade-off between its individual components. The classifica-
tion context lacks such a neat theory. The main result reached so far is the
Tumer & Ghosh model, that shows how correlation among individual classifiers
can affect the performance of a MCS. It would be then useful to understand
how they relate to each other. In this section we will show that a regression
problem is implicit in the Tumer & Ghosh model, but it is not obvious what is
the estimator and what is the target that are to be considered. Our contribution
will be to make it clear.

3.1 Which Random Variable to Consider?

As we already mentioned in Sect. 2.2, in regression contexts we want to minimise
the MSE, that is the squared difference between the estimator function f and
the true target d. Thanks to well known bias-variance decomposition [6], the
expected mean squared error can be decomposed into bias and variance, as
illustrated in (3).

In the Tumer & Ghosh model, the random variable (RV) in question is the
boundary shift b in Fig. 1. Intuitively, b can be regarded as the ‘key’ variable
to reformulate this in a regression framework. As b decreases towards 0, the
added error drops accordingly; though bias and variance of b are discussed, it
should be noted that this model differs from other bias-variance decompositions
for classification problems, e.g. [10], because it treats the error as a regression
random variable.

The connection between the bias-variance-covariance and the Tumer & Ghosh
model is not immediately apparent; the main question is: what are the corre-
sponding ’estimator’ and ’target’ variables in this framework?

In order to answer this question, we can first observe that the shaded area
in Fig. 1 has approximately the shape of a triangle. The area S of a triangle is
S = 1

2 (base × height).
After some manipulations we can rewrite (1) as

E = p (x∗)
1
2

(εi − εj)
εi − εj

t
. (5)

If we do not take into consideration the constant p(x∗), it is easy to see that the
added error is the area of a triangle having base (εi − εj) and height b = εi−εj

t .
Let us denote Pi = P (ωi|x) and Pj = P (ωj |x) the posterior probabilities of

classes ωi and ωj conditioned on point x. The posterior probability for the k-th
class can be written as:

fk = Pk + εk . (6)

The base (εi − εj) of the triangle can be expressed as:

εi − εj = (fi − fj) − (Pi − Pj) . (7)
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Fig. 2. The added error has approximately the shape of a triangle

If we look at the picture in Fig. 2 the base of the triangle is not only proportional
to b (it is t times b) but is also a more meaningful random variable. Indeed the
error, that is proportional to b2 is equal to 0 whenever b is equal to 0. At the
optimum boundary, the base of the triangle is equal to 0:

(fi − fj) − (Pi − Pj) = 0 . (8)

The error drops to 0 when the difference between the two function estimation
equals the difference between the posterior probabilities.

Tumer & Ghosh model can be interpreted as a regression problem by simply
considering the base instead of the height of the triangle. In this case we have an
estimator fij = (fi −fj), that is the difference between two posterior probability
estimators. Furthermore we can think of the difference dij = (Pi − Pj) as the
target of our new regression problems. The aim of the regression problem is to
make the function estimator (fi − fj) as close as possible to the new target
(Pi − Pj). This is true for every point x ∈ IR, as shown in Fig. 2.

This change of random variables increases the understanding of the model,
because it makes possible to point out a valid estimator function and target for
the Tumer & Ghosh model. Indeed this looking at the Tumer & Ghosh model
from another perspective determines to re-define not only the RV of interest,
but also its bias-variance decomposition as summarised in Table 1.

Table 1. Some key aspects of the original T & G model are compared with our new
interpretation in a regression context

T & G Model New Interpretation
RV b = 1

t
[(fi − fj) − (Pi − Pj)] fi − fj

Target 0 Pi − Pj

Bias βb = βi−βj

t
βij = tβb + (Pi − Pj)

Variance σ2
b =

σ2
i +σ2

j

t2
σ2

ij = t2σ2
b
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Now that we have found a formulation of the Tumer & Ghosh model in a
regression context, it would be interesting to investigate the idea of diversity
and to develop an algorithm able to show significative improvements whenever
we try to minimise the added error.

4 Optimizing Diversity by NC Learning

A way of exploiting this inter-dependency is through the Negative Correlation
algorithm [11]. Removing an assumption made by Liu [11], Brown [9] proved
that NC learning can be seen to be exploiting the Ambiguity decomposition. In
his formulation [3] NC algorithm uses the Ambiguity decompositon as it tries to
minimize a ”diversity-encouraging” error function:

ediv =
1
M

M∑
m=1

1
2

(fm − d)2 − γ
1
M

M∑
m=1

1
2

(
fm − f̄

)2
. (9)

The algorithm works iteratively by performing a single weight update for each
neural network in the ensemble, according to (9), proceeding in a pattern-by-
pattern updating scheme. The error function in (9) allows to train a simple aver-
aged ensemble of estimators in parallel, in contrast to the alternative of training
each network independently, by putting γ = 0 3. In a number of benchmark stud-
ies [9,3] it was found that a γ value less than 1 showed significant improvements
in both convergence speed and generalization ability. It is easy to notice that,
except for linear scaling factors, the last term is equal to the Ambiguity term
from (4). Given this, we now show how this algorithm can be extended to work
on linearly combined ensembles exploiting the theoretical framework described
earlier.

Given an ensemble of M classifiers combined by simple averaging and two
classes i and j, let us denote with f̄i is the ensemble estimator function for class
i

f̄i =
1
M

M∑
m=1

fm
i , (10)

and with f̄ij = f̄i − f̄j

f̄ij =
1
M

M∑
m=1

(
fm

i − fm
j

)
. (11)

Following Krogh and Vedelsby [8], we define the Ambiguity decomposition for
the Tumer & Ghosh model as:

(
f̄ij − dij

)2 =
1
M

M∑
m=1

(
fm

ij − dij

)2 − 1
M

M∑
m=1

(
fm

ij − f̄ij

)2
. (12)

3 Equation 9 is equal to an independent MSE function for each network when γ = 0.
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The NC framework applied to this gives us:

Eij =
(
f̄ij − dij

)2 =
1
M

M∑
m=1

(
fm

ij − dij

)2 − γ
{ 1

M

M∑
m=1

(
fm

ij − f̄ij

)2
}

, (13)

where γ is a scaling factor that allows us to vary the covariance component on
Eij . If we adopt a gradient descent procedure on (13), it follows that given two
classes i and j the partial derivative for the m-th classifier and the i-th class is

∂Eij

∂fm
i

=
2
M

(
fm

ij − dij

)
− 2

M
γ

(
fm

ij − f̄ij

)
. (14)

In a real multi-class problem it is unknown which pair of classes will contribute
to the added error around any point of the feature space. In this case, we have
to take into account every possible pair of classes i, j | j �= i and i, j = 1 . . . C:

ETOT =
C∑

i=1

∑
j>i

[
1
M

M∑
m=1

(
fm

ij − dij

)2

]
− γ

C∑
i=1

∑
j>i

[
1
M

M∑
m=1

(
fm

ij − f̄ij

)2

]
.

(15)
The partial derivative of the overall error with respect to the class i and the
estimator function m is

∂ETOT

∂fm
i

=
2
M

C∑
j=1
j �=i

(
fm

ij − dij

)
− γ

[ 2
M

C∑
j=1
j �=i

(
fm

ij − f̄ij

) ]
. (16)

Nevertheless, (14) still holds for each pair of classes, and is the true added error
for the two class involved around a decision boundary. Equations (14) and (16)
can be used for training in parallel a simple averaged system of neural networks,
like (9) does in regression problems as an alternative to the standard independent
training with the error function 1

2

∑M
m=1 (fm − d)2.

5 Experiments

The aim of these experiments was to assess the performance of the NC ensemble
learning algorithm we derived from the new interpretation of Tumer & Ghosh
model in a regression context. We have applied this new NC algorithm on three
real-world classification problems. The first dataset we used is a random sample
of 3602 items from Phoneme dataset, from the ELENA project. The aim of
the dataset is phoneme recognition—to distinguish between nasal (class 0) and
oral sounds (class 1). There are 3602 data items, 5 continuous features, and
the class distribution is approximately 70% class 0 and 30% class 1. The other
two datasets were taken from the UCI repository. The Wine dataset has 178
instances, 13 continuous features, and 3 classes; the Heart Disease dataset has
270 instances, 13 features (mixture of continuous/discrete), and 2 classes. In
both cases the input features were rescaled to zero mean and unit variance.
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Fig. 3. Phoneme test error for an ensemble with relatively simple MLPs (each has 3
hidden nodes). On the left is an ensemble of size M = 3 (optimum γ∗ = 1). On the
right is a larger ensemble of size M = 10 (optimum γ∗ = 0.8). The larger ensemble
clearly faster convergence.
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Fig. 4. Phoneme test error for an ensemble with relatively complex MLPs (each has 10
hidden nodes). On the left is an ensemble of size M = 3 (optimum γ∗ = 0.3). On the
right is a larger ensemble of size M = 10 (optimum γ∗ = 0.8). The NC technique shows
no significant improvements over independent training with such complex networks.

Experiments have been conducted with multilayer perceptrons, with a sin-
gle hidden layer, two outputs and logistic activation functions on all nodes. In
order to understand the inter-dependency between the number of networks M
and the complexity H of networks4 we have tested four different possible com-
binations of small/large systems made of low/high complexity neural networks,
where we consider 3 and 10 to respectively be a suitable value for small/low and
for large/high. Ten runs of the algorithm have been done for each of these com-
binations. Then, results have been compared with the performance of a single
classifier (neural network with two outputs) and with an identical system5 of
individuals trained independently.
4 i.e. The number of hidden nodes H , considered that every single component of MCS

has the same configuration, that is the same number of hidden nodes.
5 That is same size and same complexity.
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Table 2. Mean (and 95% confidence intervals) improvement of systems trained with the
NC algorithm over independent training after 1000 epochs for low complexity systems
(H = 3) and after 5000 epoch for high complexity systems (H = 10). Note that the
best gains are made with large ensembles of relatively simple networks.

Dataset M = 3, H = 3 M = 10, H = 3 M = 3, H = 10 M = 10, H = 10
Phoneme 2.0 (0.7) 3.8 (0.4) −0.6 (1.1) 0.4 (0.3)

Wine 20.5 (2.1) 16.2 (1.4) 1.4 (0.5) 0.9 (0.1)
Heart 1.7 (0.1) 3.4 (0.5) 2.7 (0.4) 3.0 (0.2)

Figure 3 shows results on Phoneme dataset for ensembles of simple networks,
while Fig. 4 illustrates results obtained with ensembles of complex networks. In
these figures the performance of the independent training MCS, and both per-
formances for the special case γ = 0 and the optimum γ value γ∗6 on the test
dataset have been reported. Table 2 summarises results—the largest improve-
ment is from a large ensemble of relatively simple networks (3.76%); whereas a
small ensemble of complex networks is 0.73% worse than the independent case.

It can also be observed that system improvements can be always obtained for
optimum γ values γ∗ > 0. Furthermore, every system has always shown better
performances than a single network. Results obtained on Phoneme dataset illus-
trates that the NC learning algorithm applied in the Tumer & Ghosh framework
behaves very similarly to the NC algorithm on regression problems [9]. The ob-
servations are consistent with the commonly held idea in the field that MCS
benefits are best levied from a large system of relatively simple classifiers. This
principle of using a large ensemble of weak classifiers is echoed by other works,
such as Boosting or Stochastic Discrimination [12].

6 Discussion and Conclusions

We have run several experiments by testing our NC algorithm on real classifica-
tion problems. The work done so far, shows that our interpretation is consistent
with results obtained, that is the NC learning applied to the new interpretation
of the Tumer & Ghosh model shows improvements in terms of performance with
reference to a system of networks trained independently. Its success supports the
original Tumer & Ghosh idea of decreasing correlations among classifiers as a
tool for increasing MCS accuracy, also illustrating that this “diversity” can be
engineered by an appropriate technique, in this case, the Negative Correlation
Learning framework.

An important point to note in this discussion is the assumptions of noise on
the target data. If we wish to maximise the log-likelihood of the data, under the
assumption of Gaussian noise, the appropriate error function is the mean squared
error. For classification problems it is usual to assume binomial/multinomial
noise, leading to the cross-entropy error function. It should be noted here that
in adopting the regression framework we have implicitly made the assumption
6 the γ that gives the best performance of the ensemble.
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of Gaussian distributed noise on the posterior probability estimates. We leave
the analysis under different noise assumptions for future work.

A full empirical investigation is out of the scope of this paper and will be
conducted in later work. The main contribution of this paper has been to inves-
tigate the theoretical links between two different frameworks, that is: the well
known regression ensemble and a linearly combined classifier ensemble.
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