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Abstract. Data with multi-valued categorical attributes can cause ma-
jor problems for decision trees. The high branching factor can lead to
data fragmentation, where decisions have little or no statistical support.
In this paper, we propose a new ensemble method, Random Ordinality
Ensembles (ROE), that circumvents this problem, and provides signif-
icantly improved accuracies over other popular ensemble methods. We
perform a random projection of the categorical data into a continuous
space by imposing random ordinality on categorical attribute values. A
decision tree that learns on this new continuous space is able to use binary
splits, hence avoiding the data fragmentation problem. A majority-vote
ensemble is then constructed with several trees, each learnt from a differ-
ent continuous space. An empirical evaluation on 13 datasets shows this
simple method to significantly outperform standard techniques such as
Boosting and Random Forests. Theoretical study using an information
gain framework is carried out to explain RO performance. Study shows
that ROE is quite robust to data fragmentation problem and Random
Ordinality (RO) trees are significantly smaller than trees generated using
multi-way split.

Keywords: Decision trees, Data fragmentation, Random Ordinality, Bi-
nary splits, Multi-way splits.

1 Introduction

Ensembles are a combination of multiple base models for which the final classifi-
cation depends on the combined outputs of individual models. Classifier ensem-
bles have shown to produce better results than single models, if the classifiers
are accurate and diverse [7,12].

Several different methods based on the principle of data randomization have
been proposed to build diverse decision tree ensembles. Some methods manip-
ulate the data, whereas some other methods manipulate the splitting criteria.
Bagging [3] and Boosting [10] introduce randomization by manipulating the dis-
tribution of training patterns supplied to each classifier. Random Trees [8] and
Random Forests [4] manipulate the splitting criteria to build ensembles of
decision trees.
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The majority of existing methods [5,13] for decision trees build a tree in a top-
down approach and use various impurity functions to estimate the quality of the
attributes in order to select the best one to split on. Whether there should be a
binary split or multi-way split has been a question of extensive research [5,13,9,2].
While multi-way splits produce a more comprehensible tree, they may lead to the
data fragmentation problem [14], where fine-grained partitioning of the training
set at every tree node reduces the number of examples at lower-level nodes. As
decisions in the lower levels nodes are based on increasingly smaller fragments of
the data, some of them may not have much statistical significance.

Motivated by the advantages of binary decision trees (low data fragmentation)
for multi-valued categorical data [5,13,9], in the proposed work, we build classifier
ensembles of binary decision trees for datasets consisting of multi-valued categor-
ical attributes.

The rest of the paper is organized as follows: in the next section, we discuss
different binary-split and multi-way split criteria for decision trees. In section 3,
we present the Random Ordinality ensemble technique. Theoretical study of RO
attributes using information gain ratio framework is presented in section 4. The
experiments are presented in section 5. The effect of data fragmentation on ROE
and sizes of RO trees are studied in section 6. The paper ends with conclusions
and future work.

2 Related Work with Split Criteria

In this section, we analyze various split criteria used in decision trees for multi-
valued categorical attributes.

The CART [5] procedure proposed by Brieman uses the Gini index as its split-
ting criterion. As a multi-way split (for multi-valued categorical attributes) with
the Gini index favours those with more values, CART enforces binary splits to
overcome this problem. As CART procedure builds binary trees, the values of the
categorical attribute at the node have to be divided into two groups. If the num-
ber of attribute values is |A| then the number of nontrivial binary splits is given
by 2(|A|−1) − 1. Selecting the best split is computationally expensive. Breiman [5]
shows that for two class problems the best split can be found by examining only
(|A|-1) possibilities.

C4.5 as proposed by Quinlan [13] uses the information gain ratio as the splitting
criterion. C4.5 builds a binary tree for continuous data. There are two methods in
C4.5 to handle multi-valued categorical attributes. In the first, it allows the multi-
way split of nodes (one branch for each attribute value). In the second method, it
uses a greedy approach to iteratively merge the attribute values into two groups.
Another way to obtain a binary split for a multi-valued categorical attribute is
to partition the data points using an attribute value [5,9]. In this method, all the
data points with that attribute value form one group, whereas the other group is
formed with the other examples. Geurts et al. [11] suggest a randomized method
to create binary attributes from the multi-valued attributes; they divide the at-
tribute values randomly into the two categories. As in this method the node split
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decision is taken without considering the output, the classification accuracy of the
tree may be poor.

Our method is between the methods proposed by Breiman (searching for the
best split) [5] and completely random splits [11]. In RO trees, the best split at
each node can be found by examining (|A|-1) possibilities. In this next section, we
present RO ensembles.

3 Random Ordinality Ensembles

In this section we discuss our proposed method, for producing ensembles of binary
decision trees on datasets with multi-valued categorical attributes. The handling of
categorical attributes is difficult as the category values have no intrinsic ordering.
For example (dog, cat, cow), have no natural order. This is distinct from discrete
data, such as (low, medium, high), where there is a natural order to the attribute
values. We can exploit this property to build an ensemble of binary decision trees.
We solve the node splitting problem under some random constraints. Our method
is between the methods proposed by Breiman (searching for the best split) [5] and
completely random splits [11]. To find the best split at each node (|A|-1) possibil-
ities are examined. Random constraints used in the proposed method are helpful
in building classifier ensembles as the randomization helps in creating diversity.
This technique is based on data manipulation by imposing a random or-
dinality onto the categorical attribute values. This implies a random projec-
tion of the categorical attributes into a continuous space. Our method is based on
data manipulation, so it is not specific to any split criterion—Random Ordinality
creates diverse training datasets.

3.1 Data Generation Using RO

As there is no natural order given for the categorical attribute values, we can en-
force a random ordinality on these values. In other words, we create a random pro-
jection of categories to a continuous space. We explain our method by using the
example data given in column one of Table 1. This data has four attribute values
(Cow, Dog, Cat, Rat) for one of its attributes (attribute 1). We assign some inte-
ger number (1 to number of attribute values) to them randomly such that no two
attribute values are assigned the same integer value. For example, we assign Dog
= 1, Cow = 2, Rat = 3, Cat = 4 to the attribute values of the first attribute. The
enforced ordinality is therefore Dog<Cow<Rat<Cat. We follow the same process
for all the multi-valued categorical attributes independently. Our final dataset will
be integer-valued, therefore having a natural ordering. Following this method we
can generate diverse continuous datasets from the original training dataset.

3.2 Learning

Each decision tree in the ensemble learns on one dataset from the pool of differ-
ent datasets created by RO. During learning, integer-valued attributes are treated
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Table 1. Example of Random Ordinality for a single attribute A1. The possible values
of A1 have no natural ordering—but can be randomly assigned with an ordinality, as
shown by new attributes A′

1, and A′′
1 . In A′

1, we have Dog<Cow<Rat<Cat, while in A′′
1 ,

we have Rat<Cat<Cow<Dog.

A1 → A′
1 A′′

1

Cow → 2 3
Dog → 1 4
Cow → 2 3
Dog → 1 4
Rat → 3 1
Rat → 3 1
Cat → 4 2
Cat → 4 2

as continuous attributes. We have binary splits in the tree as for continuous data
attributes the node is split at a threshold value. For our example, we have three
possible splits, {(1), (2,3,4)}, {(1,2), (3,4)} and {(1,2,3), (4)}. The best split is de-
cided by the desired split criterion. We avoid the data fragmentation problem as
there is a binary split. Using this method, it is not necessarily true that we get the
best split as shown by Breiman [5]. However, since we want to create an ensem-
ble, different node splits are necessary to create diverse decision trees. Further-
more there is no change in the tree building process so no extra computational
cost for the tree building phase. Results of different decision trees in the ensem-
ble are combined using a majority voting scheme to get the final prediction. ROE
algorithm is presented in Fig. 1. In the next section, we present theoretical study
of RO attributes.

4 Study of RO Attributes in an Information Gain
Framework

In RO, new attributes are created by randomly assigning order to different at-
tribute values and treating these new attributes as continuous. The selected split-
ting criterion is used to decide the best binary split. In this section, we will use the
information theoretic framework to discuss whether these attributes are good for
classification.

Let D be a 2 class (Y = +1 and Y = -1) dataset with the same number of pos-
itive and negative examples. Let A be a multi-valued attribute with cardinality
|A| again with uniform prior probability. Half of these values correctly identify
the positive class, whereas rest of the values correctly identify the negative class.
For example, if attribute values are (a,b,c,d,e,f),

p(Y = +1|A = a) = 1, p(Y = +1|A = b) = 1, p(Y = +1|A = c) = 1. (1)
p(Y = −1|A = d) = 1, p(Y = −1|A = e) = 1, p(Y = −1|A = f) = 1. (2)
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Input- Dataset T with m multi-valued categorical attributes and L size of the
ensemble.

Training Phase
for i=1...L do

Data Generation
Apply Random Ordinality to generate integer valued dataset Ti.
Learning Phase
Treat dataset Ti as continuous, and learn decision tree Di.

end for

Testing Phase
For a given data point x
for i=1...L do

Convert x to x′ using the ordinality of tree Di.
Get the prediction for x′ from tree Di.

end for
Combine the results of L decision trees by the chosen combination rule to get the final
classification result (we use majority voting method).

Fig. 1. Algorithm for Random Ordinality Ensembles (ROE)

Wecalculate the information gain ratio of different attributes createdbyRO.We
randomly assign order to (a,b,c,d,e,f) and calculate a binary split at each point, the
maximum information gain ratio is taken as the information gain ratio associated
with this random order. For example, if we assign

a < c < f < e < b < d. (3)

The maximum information gain ratio is based on the split ((a,c) (f,e,b,d)) and
this is taken as the information gain ratio associated with the random order pre-
sented in Eq. 3. We calculate the average information gain ratio of different possi-
ble random orders of attribute values. We carry out this exercise for attributes
with different cardinality, whereas dataset and attribute values have the same
properties as discussed above.

We also calculate the information gain ratio of binary splits created by random
splitting of attribute values into two groups. Results are presented in table 2. Re-
sults indicate that the average gain ratio of attribute created using RO and the
gain ratio of multi-valued attributes are quite similar, whereas random splits do
not create good splits. As the cardinality of the attribute increases, the average
information gain ratio of RO attributes decreases. The same is true for the multi-
way split as the value of normalizing factor (log2 |A|) increases. This suggests that
on average we are creating binary splits from multi-valued categorical attributes
that have similar information gain ratio. The theoretical study suggests that for
multi-valued categorical attributes with certain properties, the informationgain
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Table 2. Gain ratio of attributes with different numbers of attribute values

Cardinality |A| Number of Average gain Average gain Gain ratio
of the random ratio for ratio for for

attribute A attributes RO attributes (s.d.) attributes with multi-way split
created random split (s.d.)

4 104 0.59(0.29) 0.37(0.26) 0.50
6 104 0.47(0.20) 0.20(0.24) 0.39
8 106 0.40(0.16) 0.13(0.18) 0.33
10 107 0.35(0.12) 0.10(0.14) 0.30
12 107 0.32(0.10) 0.08(0.11) 0.28
14 107 0.29(0.09) 0.06(0.09) 0.26

ratio of a binary split with some random constraints may be equal to or
greater than a multi-way split.

In the next section, we present the comparative study of ROE against the other
ensemble methods.

5 Empirical Evaluation

A study was carried out to compare the performance of ROE with Bagging [3],
AdaBoostM1 [10] and Random Forest [4]. We created two types of RO ensem-
bles. In the first, ROE with J48, we used the J48 (the WEKA [15] implementation
of C4.5 as the base classifier (with the unpruned option)), which uses multi-way
splits for multi-valued categorical attributes as per default. In the second, ROE
with RS, we used Random Trees[15] as the base classifier. Random Trees [15] con-
structs a tree that considers K random features at each node. In other words, we
combine the benefits of attribute randomization of Random Subspaces (RS) with
Random Ordinality. We carried out experiments with Bagging and AdaBoost.M1
[10] using J48 (unpruned) as the base model, and Random Forests (WEKA im-
plementations of these ensemble method were used). The sizes of the ensembles
were set at 50 for these experiments. K (number of attributes to randomly investi-
gate) is taken as the half of the attributes for Random Tree. Default settings were
used for the rest of the parameters. The experiments were conducted following the
5 × 2 cross-validation [6]. The original test proposed by Dietterich [6] to compare
the performance of classifiers suffers from low replicability. Alpaydin [1] propose
a modification to the 5 × 2 cross-validation F test. We used this test for our ex-
periments. We considered a confidence level of 95% for this test. Table 3 presents
classification errors of different ensemble methods on different datasets.

Results suggest that, with the exception of Monks1 data, the performance of
ROE with J48 is either statistically similar or better than that of other popular
ensemble methods. The performance of ROE with RS is either statistically similar
or better than that of other popular ensemble methods for all datasets. For Monks1
data the performance of ROE with J48 was poor. We discuss this dataset in detail
to understand the limitations of RO ensembles.
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Table 3. Classification error in % for different ensembles; bold numbers indicate best
performance. Comparative results are presented ROE with J48/ROE with RS in bracket
(if performance of these ensembles are different). ‘+/-’ shows that performance of ROE
is statistically better/worse than that algorithm for that dataset, ‘Δ’ shows that there is
no statistically significant difference in performance for this dataset between ROE and
that algorithm.

Dataset RO with J48 RO with RS Bagging AdaBoostM1 Random Single
ensemble ensemble Forest Tree (J48)

Promoter 13.1 12.8 15.5 19.6 13.4 28.5(+/+)
Hayes-Roth 16.9 15.9 22.8(+/+) 23.1(+/+) 22.2(+/+) 25.3(+/+)

Breast Cancer 30.3 30.1 29.9 35.6 32.4 35.9
Monks1 18.3 1.5 5.8(-/Δ) 5.9(-/Δ) 3.3(-/Δ) 15.9(-/+)
Monks2 33.9 30.9 46.9(+/+) 47.5(+/+) 50.4(+/+) 49.6(+/+)
Monks3 0 0 0 0 0 0
Balance 19.6 20.0 29.6(+/+) 30.3(+/+) 26.9(+/+) 31.4(+/+)

Soyalarge 8.8 7.3 8.2 7.3 7.9 9.7
Tic-tac-toe 6.6 3.4 10.0(+/+) 3.5 8.6(Δ/+) 18.4(+/+)

Car 4.1 4.2 8.3(+/+) 5.9(+/+) 8.3(+/+) 9.2(+/+)
DNA 4.5 4.4 6.2(+/+) 5.1 5.8 8.9(+/+)

Mushroom 0.1 0.1 0 0 0 0
Nursery 1.0 0.9 2.8(+/+) 1.3(+/+) 2.6(+/+) 3.6(+/+)

RO with J48
win/draw/lose 7/5/1 5/7/1 5/7/1 9/3/1

RO with RS
win/draw/lose 7/6/0 5/8/0 6/7/0 9/4/0

Monks1 dataset has six attributes and two classes. The classification is Y = 1,
if (x1 = x2)∨ (x5 = 1). All the other data points belong to class 2. When we treat
data as continuous, the first concept (x1 = x2) is a diagonal concept. J48 trees are
restricted to orthogonal decision boundaries. In other words, decision trees divide
the input attribute space into rectangular regions whose sides are perpendicular to
the attribute axis. Decision trees have a representational problem because of this
orthogonal property; they cannot learn diagonal concepts properly. Ensembles of
decision trees solve this problem, as combined results of decision trees produce a
good approximation of a diagonal concept [7]. The quality of the approximation
depends on the diversity of decision trees in the ensemble. RO with RS trees are
more diverse as compared to RO with J48 trees. Hence, ROE with RS can learn
this diagonal concept in Monk1 data better than ROE with J48.

Building a good ensemble depends on the creation of diverse decision trees.
We create diverse decision trees by imposing random ordinality to categorical at-
tributes values that in turn create different node splits. The diversity in node splits
is the key for diverse decision trees. If we have |A| attribute values, these attributes
will be present in different trees in different order, the possible number of dif-
ferent splits from these attribute values is 2(|A|−1) − 1. If |A| is small, there is
a large possibility that different trees have same node splits, and we may not get
very diverse trees. Tic-Tac-Toe data has only 3 attribute values for each attribute.
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Hence, there is only three possible node splits for each attribute (we are taking
the case when all the attribute values are present in the node). Different trees can
have one of the three possible node splits for a attribute. It means that there is a
large possibility that different trees have same node splits. In this condition, the
trees in the ensemble will not be very diverse. When we combine the attribute
randomization of RS with RO, we observe a large improvement in the classifica-
tion error as compared to ROE with J48 (the average error reduced from 6.6%
to 3.4%). Better diversity of ROE with RS is the reason for this improvement.
In the next section, we present the various studies to analyze RO trees and RO
ensembles.

6 Study of RO Ensembles and RO Trees

One of the motivation of ROE is that it avoids data fragmentation problem. In this
section we study the effect of data fragmentation on ROE and RO tree
sizes.

6.1 Study of Data Fragmentation for ROE

Data fragmentation may affect the performance of decision trees. We have carried
out a controlled experiment to see how different ensemble methods perform with
respect to the number of attribute values. For this purpose, we selected two pure
continuous datasets; Segment and Vehicle. We converted these datasets into cat-
egorical datasets using equal width discretization. We studied various ensemble
methods on these discretized datasets; varying the numbers of bins to see its ef-
fect on different ensemble methods. We performed five replications of a two-fold
cross-validation. The results (Fig. 2) suggest that classification errors of RO en-
sembles are relatively unaffected. When we increase the number of bins we have
a small number of points in every bin; that leads to badly estimated probabili-
ties and poor generalization. Whereas, RO ensembles have binary decision trees
so they are more robust to the data fragmentation problem.
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Fig. 2. Effect of equal width discretization on various ensemble methods for Vehicle and
Segment datasets. RO resists fragmentation as space grows.
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Table 4. The average sizes of RO trees and multi-split J48 trees for different datasets

Name of Size of The average The average
dataset the training number of leaves/size of number of leaves/size of

data RO trees (J48) multi-way split J48 trees

Car 864 54/107 127/174
DNA 1587 76/151 211/281

Tic-Tac-Toe 479 49/97 92/142
Promoter 53 6/11 13/17

6.2 RO Tree Sizes

Smaller trees have greater statistical evidence at the leaves. Motivated by Occams
Razor, small trees are preferable. As RO trees have binary splits RO trees are
more likely to have smaller sizes than that of multi-split decision trees. We studied
RO tree sizes for various datasets; Car, DNA, Tic-Tac-Toe and Promoter. The
experiments were conducted following the 5 × 2 cross-validation and 50 RO trees
are created in each run.

In the table 4, we present the average sizes of RO trees (J48 decision trees cre-
ated using datasets generated by RO method) and normal multi-split J48 decision
trees for different datasets. For all the datasets, RO trees are smaller that normal
multi-split J48 decision trees. For example, for DNA dataset, the average size of
RO trees is 151 whereas the average size of normal multi-split J48 decision trees
is 281. These results indicate that RO helps in creating smaller decision
trees.

7 Conclusion

In this paper, we have presented a new ensemble method to build diverse binary
decision trees for datasets consisting of multi-valued categorical attributes. We con-
vert categorical attributes into continuous attributes by randomly assigning inte-
ger values to categorical attribute values. As the transformation to continuous
data is random, diverse datasets are created. When a decision tree is constructed
by treating these new attributes as continuous ones, we have binary splits at the
nodes giving binary decision trees. The theoretical study suggests that for multi-
valued categorical attributes with certain properties, the information gain ratio of
a binary split of RO attributes may be equal to or greater than a multi-way split.
We create two types of ensembles using RO. In the first, we use J48 (the WEKA
[15] implementation of C4.5) as the base model for the ensemble. In the second,
we combine the attribute randomization of Random Subspaces with Random Or-
dinality. The comparative study on 13 different datasets from the UCI repository
suggest that ROE significantly outperform other popular ensemble methods in
terms of test error. The study shows that ROE avoids the data fragmentation
problem and RO trees are significately smaller than multi-way split trees. ROE
is easy to implement and parallel implementation of ROE is also possible.
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In this present work, we imposed random ordinality to each attribute indepen-
dently. In future we will also take interdependencies of attributes into considera-
tion while imposing random ordinality. The ”take-home” message of this paper is
that, when categorical attribute values have no intrinsic order, this property can
be exploited to build a successfully performing ensemble of diverse binary decision
trees.
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