
DATA TRANSFORMATION FOR
DECISION TREE ENSEMBLES

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2009

By
Amir Ahmad

School of Computer Science

Contents

Abstract 18

Declaration 19

Copyright 20

Acknowledgements 21

1 Introduction 23
1.1 A Committee Decision . 23

1.2 Data Transformation and Ensembles in Machine Learning 24

1.3 Statement of Problems Tackled . 25

1.3.1 Decision Tree Ensembles - The Representational Problem . . 25

1.3.2 Decision Tree Ensembles - Data fragmentation problem . . . 26

1.3.3 Our Approach . 27

1.4 Thesis Structure . 29

1.5 Publications Resulting from the Thesis 30

1.6 Notations . 31

2 Literature Survey 33
2.1 Supervised Learning . 33

2.2 Decision Trees . 33

2.2.1 Splitting Criteria . 37

2.2.2 Node splits for Continuous Attributes 38

2.2.3 Binary Split or Multi-Way Split for Categorical Attributes? . . 39

2.3 Types of Decision Nodes . 42

2.4 Motivation for Classifier Ensembles 44

2.5 Theoretical Models for Classifier Ensembles 46

2

2.6 Methods of Constructing Classifier Ensembles 47

2.6.1 Changing the Distribution of Training Data Points 47

2.6.2 Changing the Attributes Used in the Training 48

2.6.3 Output Manipulation . 48

2.6.4 Injecting Randomness into the Learning Algorithm 48

2.6.5 Combination of Different Ensemble Methods 49

2.7 Some Popular Ensemble Methods 49

2.7.1 Bagging . 49

2.7.2 Boosting . 50

2.7.3 MultiBoosting . 50

2.7.4 Random Subspaces . 51

2.7.5 Dietterich’s Random Trees 51

2.7.6 Random Forests . 51

2.7.7 Extremely Randomized Trees 52

2.7.8 The Random Oracle Framework 52

2.8 Conclusion . 54

3 Data Transformation Techniques 55
3.1 Different Data Transformation Techniques 55

3.2 Principal component analysis (PCA) 56

3.3 Random Projection (RP) . 57

3.4 Discretization . 60

3.4.1 Discretization Methods . 61

3.4.2 Effect of the Discretization Process on Different Classifiers . . 64

3.5 Data Transformation in Classifier Ensembles 65

3.6 Conclusion . 66

4 A Study of Random Linear Oracle Framework and Its Extensions 67
4.1 Diverse Linear Multivariate Decision Trees 67

4.2 Random Linear Oracle Ensembles 70

4.3 Learned-Random Linear Oracle . 72

4.4 Multi-Random Linear Ensembles . 74

4.5 Experiments . 78

4.6 Results . 82

4.6.1 Ensembles of Linear Multivariate Decision Trees 82

4.6.2 Comparative Study of RLO, LRLO and Multi-RLE 85

3

4.7 Conclusion . 86

5 A Novel Ensemble Method for the Representational Problem 88
5.1 Random Discretized Ensembles (RDEns) 88

5.1.1 Data Generation . 89

5.1.2 Learning . 91

5.2 Motivation For Random Discretization Ensembles 92

5.3 Related Work . 94

5.4 Experiments . 95

5.5 Analysis . 96

5.5.1 Noisy Data . 96

5.5.2 The Study of the Ensemble Size 99

5.5.3 The Effect of the Number of Discretized Bins 101

5.5.4 The Study of Time/Space Complexities 104

5.6 Combining Random discretized Ensembles with Multi-RLE 107

5.7 Motivation for Random Projection Random Discretization Ensembles
(RPRDE) . 108

5.8 Experiments . 109

5.8.1 Parameters for RPRDE . 110

5.8.2 Controlled Experiment . 110

5.8.3 Comparative Study . 111

5.8.4 The Study of Ensemble Diversity 112

5.8.5 RPRDE against the Other Classifiers 115

5.8.6 Noisy Data . 115

5.8.7 Combining RPRD with Other Ensemble Methods 117

5.9 Weaknesses . 122

5.10 Conclusion . 122

6 A Novel Ensemble Method to Reduce the Data Fragmentation Problem 123
6.1 Data fragmentation problem . 123

6.2 Random Ordinality Ensembles . 124

6.2.1 Data Generation . 124

6.2.2 Learning . 125

6.3 Empirical Evaluation of RO: Trees and Ensembles 127

6.3.1 Experiments with a Single RO Tree 127

6.3.2 Experiments with RO Ensembles 127

4

6.4 Study of RO attributes in the information theoretic framework 131
6.5 Controlled Experiments . 134

6.5.1 Discussion . 138
6.6 Analysis . 139
6.7 Analysis of RO Ensembles . 141

6.7.1 The Effect of the Data Fragmentation 142
6.7.2 RO Tree Sizes . 142
6.7.3 The Diversity - Accuracy Trade Off 144
6.7.4 The Effect of the Ensemble Size 147
6.7.5 Combinations of RO with the Other Ensemble Methods . . . 155

6.8 Conclusion . 157

7 Conclusion and Future work 158
7.1 Contributions of the Thesis . 158

7.1.1 Conclusion . 159
7.2 Future Work . 160

A 162
A.1 Datasets . 162
A.2 The Kappa measure . 162
A.3 Results for RPRDE . 164

Bibliography 169

5

List of Tables

2.1 Continuous data. 38
2.2 Tennis Data. 40

3.1 A continuous dataset. We present discretization of this dataset by dif-
ferent methods. 62

3.2 Different ensemble methods that use data transformation. 66

4.1 Comparative chart of RLO, RLO′, LRLO and Multi-RLE on the basis
of number of possibilities to be considered at the root node and other
nodes. ‘-’ means split points are created randomly and ‘+’ means split
points are created by using the selected split criteria. m is the number
of the original attributes, d is the number of new attributes created by
RP and n is the number of data points in the training data. 79

4.2 Classification errors in % for the linear multivariate ensemble method.
1,5 and 10 new attributes, created by using random projections, are
added. We also presented the results with other ensemble methods.
Results suggest that the Adaboost.M1 and Random Forests generally
perform better than the proposed method. 83

4.3 Classification errors in % of Bagging and its combination with RLO,
LRLO and Multi-RLE. Bold numbers show the best performance. Re-
sults suggest that creating a large number of new attributes and con-
catenating with the original features is the best strategy in the RLO
framework. 84

5.1 A two dimensional numeric dataset. 91
5.2 Classification errors (in %) for different ensembles methods on differ-

ent datasets, bold numbers show the best performance. RD ensembles
and ERD ensembles generally perform similar to or better than bag-
ging and quite competitive with Adaboost.M1 and Random Forests. . 97

6

5.3 Comparison Table- ‘+/-’ shows that performance of RD(cont.) is sta-
tistically better/worse than that algorithm for that dataset, ’∆’ shows
that there is no statistically significant difference in performance for
this dataset between RD(cont.) and that algorithm. RD ensembles
perform similar to or better than bagging and quite competitive with
Adaboost.M1 and Random Forests. 98

5.4 Classification errors (in %) for different ensembles methods for the
Pendigit dataset with different levels of noise, bold numbers show the
best performance. 99

5.5 Comparison table for the Pendigit dataset with different levels of noise
- ‘+/-’ shows that performance of RD(cont.) is statistically better/worse
than that algorithm for that dataset, ’∆’ shows that there is no statis-
tically significant difference in performance for this dataset between
RD(cont.) and that algorithm. 99

5.6 Classification errors (in %) for different ensembles methods for the
Segment dataset with different levels of noise, bold numbers show the
best performance. 99

5.7 Comparison table for the Segment dataset with different levels of noise
- ‘+/-’ shows that performance of RD(cont.) is statistically better/worse
than that algorithm for that dataset, ’∆’ shows that there is no statis-
tically significant difference in performance for this dataset between
RD(cont.) and that algorithm. 100

5.8 Classification errors (in %) for different ensembles methods for the
Vowel dataset with different levels of noise, bold numbers show the
best performance. 100

5.9 Comparison table for Vowel data with different levels of noise - ‘+/-
’ shows that performance of RD(cont.) is statistically better/worse
than that algorithm for that dataset, ’∆’ shows that there is no sta-
tistically significant difference in performance for this dataset between
RD(cont.) and that algorithm. 100

5.10 Classification errors (in %) for different ensembles methods for the
Waveform dataset with different levels of noise, bold numbers show
the best performance. 100

7

5.11 Comparison table for the Waveform data with different levels of noise -
‘+/-’ shows that performance of RD(cont.) is statistically better/worse
than that algorithm for that dataset, ’∆’ shows that there is no statis-
tically significant difference in performance for this dataset between
RD(cont.) and that algorithm. 101

5.12 Classification errors (in %) for different ensembles methods for the
Pendigit dataset with different number of discretized bins. Last four
columns show the classification error of a single decision tree, bold
numbers show the best performance. 104

5.13 Classification errors (in %) for different ensembles methods for the
Segment dataset with different number of discretized bins. Last four
columns show the classification error of a single decision tree, bold
numbers show the best performance. 104

5.14 Classification errors (in %) for different ensembles methods for the
Vowel dataset with different number of discretized bins. Last four
columns show the classification error of a single decision tree, bold
numbers the show best performance. 105

5.15 Classification errors (in %) for different ensembles methods for the
Waveform dataset with different number of discretized bins. Last four
columns show the classification error of single decision tree, bold num-
bers show the best performance. 105

5.16 Time in sec. taken in the tree growing phase for different trees. 106

5.17 Complexities of different trees. 106

5.18 Classification errors with the simulated data, bold numbers show the
best results. Results suggest that RPRDE ensembles can learn a diag-
onal problem very well. This shows that these ensembles have good
representational power. 111

5.19 Classification error(in %) for different ensembles methods on different
dataset, bold numbers show best performance. Ensemble size 10. . . . 113

5.20 Classification errors (in %) for different ensemble methods on differ-
ent datasets, bold numbers show best performance, the ensemble size
100. RPRD ensembles generally perform similar to or better than other
ensemble methods, however, their competitive advantage is more for
smaller ensembles. 114

8

5.21 Average classification errors (in %) of different methods on different
datasets, bold numbers show the best performance. 115

5.22 Classification errors (in %) for different ensemble methods on differ-
ent datasets, bold numbers show best performance, the ensemble size
10, the class noise is 10%. RPRD ensembles generally perform similar
to or better than other ensemble methods and their competitive advan-
tage is more for the noisy data. 118

5.23 Classification errors (in %) for different ensemble methods on dif-
ferent datasets, bold numbers show best performance, the ensemble
size 100, the class noise is 10%. RPRD ensembles generally perform
similar to or better than other ensemble methods, however, their com-
petitive advantage is more for smaller ensembles. 119

5.24 Comparative study of Bagging against RPRD + Bagging. ‘+/-’ shows
that performance of RPRD + Bagging is statistically better/worse than
Bagging for that dataset. or most of the data studied, the combination
of RPRD with Bagging has positive effect. 120

5.25 Comparative study of AdaBoost.M1 against RPRD + AdaBoost.M1.
‘+/-’ shows that performance of RPRD + AdaBoost.M1 is statistically
better/worse than AdaBoost.M1 for that dataset. The combination of
RPRD with AdaBoost.M1 is less successful than the combination of
RPRD with Bagging. 121

6.1 Original Dataset - All attributes are categorical. 125

6.2 New continuous data created from the dataset presented in Table 6.1
with ordering of attribute 1 values as Dog<Cow<Rat<Cat and at-
tribute 2 values as Deer<Bird<Sheep<Bat. 126

6.3 New continuous data created from the dataset presented in Table 6.1
with ordering of attribute 1 values as Dog<Rat<Cow<Cat and at-
tribute 2 values as Sheep<Bat<Deer<Bird. 126

6.4 Average classification error of single decision tree (J48) with origi-
nal data and single decision tree (J48) with RO attributes. On 9/13
datasets, the average errors of the RO trees are lower than standard
multi-way decision trees trained on the original data (multi-way split). 128

9

6.5 Classification error in % for different ensembles (rank on the basis
of average classification accuracy is given in brackets), bold numbers
show best performance. ROE ensembles generally perform similar to
or better than other ensemble methods. 129

6.6 Comparative Study of ROE with J48 and ROE with RT. Results are
presented ROE with J48/ROE with RT. if performance of these ensem-
bles are different. ‘+/-’ shows that performance of ROE is statistically
better/worse than that algorithm for that dataset, ‘∆’ shows that there
is no statistically significant difference in performance for this dataset
between ROE and that algorithm. ROE ensembles generally perform
similar to or better than other ensemble methods. 130

6.7 Information gain ratio of attributes with different numbers of attribute
values. RO attributes have better information gain ratio than multi-way
splits. 132

6.8 Testing error in % (bold numbers indicate the best performance) for
Odd Even Data 4 6 dataset, ‘+’ suggests that RO ensembles are sta-
tistically better than that ensemble method. 139

6.9 Testing error in % (bold numbers indicate the best performance) for
Odd Even Data 4 10, ‘+’ suggests that RO ensembles are statisti-
cally better than that ensemble method. 139

6.10 Testing error in % (bold numbers indicate the best performance) for
Odd Even Data 8 6, ‘+’ suggests that RO ensembles are statistically
better than that ensemble method. 140

6.11 Testing error in % (bold numbers indicate the best performance) for
Odd Even Data 8 10, ‘+’ suggests that RO ensembles are statisti-
cally better than that ensemble method. 140

6.12 Testing error in % (bold numbers indicate the best performance) for
Categorical 11−Multiplexer, the attribute cardinality is 6, ‘+’ sug-
gests that RO ensembles are statistically better than that ensemble method.140

6.13 Testing error in % (bold numbers indicate the best performance) for
Categorical 11 − Multiplexer, the attribute cardinality is 10, ‘+’
suggests that RO ensembles are statistically better than that ensemble
method. 140

10

6.14 Testing error in % (bold numbers indicate the best performance) for
Categorical 20−Multiplexer, the attribute cardinality is 6, ‘+’ sug-
gests that RO ensembles are statistically better than that ensemble method.141

6.15 Testing error in % (bold numbers indicate the best performance) for
Categorical 20 − Multiplexer, the attribute cardinality is 10, ‘+’
suggests that RO ensembles are statistically better than that ensemble
method. 141

6.16 The average sizes of RO trees and multi-split J48 trees for different
datasets. RO trees are smaller than multi-way trees. 144

6.17 Comparative Study of Bagging against RO + Bagging. ‘+/-’ shows
that performance of RO + Bagging is statistically better/worse than
Bagging for that dataset. Results suggest that RO can be combined
with Bagging to improve the performance of Bagging. 156

6.18 Comparative Study of AdaBoost.M1 against RO + AdaBoost.M1. ‘+/-
’ shows that performance of RO + AdaBoost.M1 is statistically bet-
ter/worse than AdaBoost.M1 for that dataset. Results suggest that RO
can be combined with AdaBoost.M1 to improve the performance of
AdaBoost.M1. 156

A.1 Datasets used in experiments. All datasets are categorical. 162

A.2 Datasets used in experiments. These datasets are pure continuous datasets.163

A.3 Comparison Table - The ensembles size 10, ‘+’ shows that perfor-
mance of RPRDE is statistically better than that algorithm for that
dataset, ‘-’ shows that RPRDE is statistically worse for that dataset
than this algorithm, ‘∆’ shows that there is no statistically significant
difference in performance for this dataset between RPRDE and that
algorithm. 165

A.4 Comparison Table - The ensemble size 100, ‘+’ shows that perfor-
mance of RPRD is statistically better than that algorithm for that dataset,
‘-’ shows that RPRDE is statistically worse for that dataset than this al-
gorithm, ‘∆’ shows that there is no statistically significant difference
in performance for this dataset between RPRDE and that algorithm. . 166

11

A.5 Comparison Table - The ensembles size 10, ‘+’ shows that perfor-
mance of RPRD is statistically better than that algorithm for that dataset,
‘-’ shows that RPRD is statistically worse for that dataset than this al-
gorithm, ’∆’ shows that there is no statistically significant difference
in performance for this dataset between RPRD and that algorithm. The
class noise is 10%. 167

A.6 Comparison Table - The ensembles Size 100, ‘+’ shows that perfor-
mance of RPRD is statistically better than that algorithm for that dataset,
‘-’ shows that RPRDE is statistically worse for that dataset than this al-
gorithm, ‘∆’ shows that there is no statistically significant difference
in performance for this dataset between RPRDE and that algorithm.
The class noise is 10%. 168

12

List of Figures

1.1 The left figure shows the true diagonal decision boundary and three
staircase approximations to it (of the kind that are created by decision
tree algorithms). The right figure shows the voted decision boundary,
which is a much better approximation to the diagonal boundary. The
figure is taken from [29]. 26

1.2 The framework of the thesis. Gray colour boxes show research works
carried out in this thesis. 28

2.1 An example of a decision tree. 34

2.2 ID3 decision tree algorithm. 35

2.3 An example of a multi-way split and a binary split for the Tennis data
for the Outlook attribute. 41

2.4 Graph for number of possible splits against the attribute cardinality. . 42

2.5 Examples of univariate(solid line), linear multivariate(dotted line) and
non-linear multivariate(dashed line) splits. 43

2.6 Three reasons why an ensemble works better than a single classifier.
the figure is taken from [29]. 45

2.7 XOR classification problem and its solution using a linear oracle and
two linear subclassifiers [68]. 54

3.1 A two dimensional dataset, the variation for this data is in different
directions (principal components) and not in the natural directions. . . 57

3.2 A method to create Random matrix for RP. 58

3.3 Summary of Discretization Methods [32]. 61

4.1 Algorithm for ensembles of linear multivariate decision trees. 69

13

4.2 The RLO (hyperplane) is generated by taking two random points A and
B from the training set and calculating the heperplane perpendicular to
the line segment between the points and running through the middle
point. 71

4.3 Project all data points on a random direction and spit the data by se-
lecting the random point C. 72

4.4 A RLO′ omnivariate decision tree with a random hyperplane at the root
node. 73

4.5 The original Random Linear Oracle (RLO) algorithm [68]. The high-
lighted portion of the algorithm is modified in the proposed RLO′ and
LRLO. 74

4.6 Random Linear Oracle (RLO) algorithm by using RP. The highlighted
portion of the algorithm is different from the original RLO. We define
this algorithm as RLO′. 75

4.7 A LRLO ominivariate decision tree with a decision stump at the root
node. 76

4.8 Learned-Random Linear Oracle (LRLO) algorithm. The highlighted
portion of the algorithm is different from the original RLO. 77

4.9 Multi-Random Linear Ensembles (Multi-RLE) algorithm. d new at-
tributes are created and concatenated with the original features. 79

4.10 RLO′, LRLO and Multi-RLE trees. A dotted line represents random
hyperplane, a solid line represents a decision stump trained on new
features created using random projections. 80

5.1 Random Discretization (RD) method. 90

5.2 Random Distretization Ensembles (RDEns) algorithm. 92

5.3 Division of axis by trees is uniform and fine grained. There is a di-
agonal concept. The combination of trees approximates the diagonal
concept. Right side of the figure shows a small portion of the concept
and its approximation by the ensemble of ERD trees. 93

5.4 Classification errors of various ensemble methods for the Pendigit dataset
against the size of the ensemble. 101

5.5 Classification errors of various ensemble methods for the Segment
dataset against the size of the ensemble. 102

5.6 Classification error of various ensemble methods for the Vowel dataset
against the size of the ensemble. 102

14

5.7 Classification error of various ensemble methods for the Waveform
dataset against the size of the ensemble. 103

5.8 RPRDE algorithm. In this method attributes created by using RD and
by using RP are concatenated. 108

5.9 Kappa-error plots for four ensemble methods, First column- RPRDE,
second column - Bagging, third column - AdaBoost.M1, fourth col-
umn - MultiBoosting and last column RF. x-axis - Kappa, y-axis - the
average error of the pair of classifiers. Axes scales are constant for
various ensemble methods for a particular dataset (each row). Lower κ

represents a higher diversity. The plots suggest that RPRDE classifiers
are accurate with reasonable diversity. 116

6.1 The example of multi-valued categorical attributes having four values
A, B, C, D and are converted to ordinal data by imposing random or-
dinality, A = 4, B = 3, C = 1, D = 2. 125

6.2 Algorithm for Random Ordinality Ensembles(ROE). 126

6.3 Information gain ratio for RO attributes, Random Split and multi-way
splits. RO attributes have better information gain ratio than multi-way
splits and random splits. 133

6.4 Information gain ratio for attributes created by using the RO method,
for attributes with different cardinalities. Left column - probability vs
gain ratio, right column - cumulative probability vs information gain
ratio. Small cumulative probability at low information gain ratio sug-
gests that splits for RO attributes are good for classification. 135

6.5 Information gain ratio for attributes created using random splits, for
attributes with different cardinalities. Left column - probability vs in-
formation gain ratio, right column - cumulative probability vs informa-
tion gain ratio. Large cumulative probability at low information gain
ratio suggests that these random splits are not as good as splits created
for RO attributes for classification. 136

6.6 Cumulative probability for information gain ratio for an attribute of
cardinality 12 (Left- RO attribute, Right - Random split). Smaller cu-
mulative probability at low information gain ratio suggests that splits
created for RO attributes are better for classification. 137

15

6.7 The effect of equal width discretization on various ensemble methods
for the Vehicle dataset. RO ensembles are quite robust to data frag-
mentation. 143

6.8 The effect of equal width discretization on various ensemble methods
for the Segment dataset. RO ensembles are quite robust to data frag-
mentation. 143

6.9 Kappa-error diagrams for three ensemble methods, Left column- ROE
with J48, middle column - ROE with RT, right column - Bagging.
x-axis - Kappa, y-axis - the average error of the pair of classifiers.
Axes scales are constant for various ensemble methods for a particular
dataset (each row). Lower κ represents higher diversity. RO ensembles
have accurate classifiers with reasonable diversity. 145

6.10 Part of the dataset available at each node for different depth, for deci-
sion trees with different number of splits at each node. 147

6.11 Tree depth ratio (
ϑ2

ϑ|A|
) for different number of splits (|A|) such that

N(ϑ|A|) = N(ϑ2) where N(ϑ|A|) is the number of points at each node at
depth ϑk, for trees having |A| splits at each node. 148

6.12 Classification error (with 95% confidence interval) of various ensem-
ble methods vs size of the ensemble for different datasets. 149

6.13 Classification error (with 95% confidence interval) of various ensem-
ble methods vs size of the ensemble for different datasets. 150

6.14 Classification error (with 95% confidence interval) of RO ensembles
(top fig. ROE with J48 and bottom fig. ROE with RT, solid line) for
the Car dataset with expected classification error (dotted line) using
Fumera et al. [42] framework. The Y-axis of the graph represents test-
ing error in % of the ensemble, and the X- axis represents the number
of classifiers in the ensemble. 151

6.15 Classification error (with 95% confidence interval) of RO ensembles
(top fig. ROE with J48 and bottom fig. ROE with RT, solid line) for
the DNA dataset with expected classification error (dotted line) using
Fumera et al. [42] framework. The Y-axis of the graph represents test-
ing error in % of the ensemble, and the X- axis represents the number
of classifiers in the ensemble. 152

16

6.16 Classification error (with 95% confidence interval) of RO ensembles
(top fig. ROE with J48 and bottom fig. ROE with RT, solid line) for
the Promoter dataset with expected classification error (dotted line) us-
ing Fumera et al. [42] framework. The Y-axis of the graph represents
testing error in % of the ensemble, and the X- axis represents the num-
ber of classifiers in the ensemble. 153

6.17 Classification error (with 95% confidence interval) of RO ensembles
(top fig. ROE with J48 and bottom fig. ROE with RT, solid line) for
the Tic-tac-toe dataset with expected classification error (dotted line)
using Fumera et al. [42] framework. The Y-axis of the graph repre-
sents testing error in % of the ensemble, and the X- axis represents the
number of classifiers in the ensemble. 154

17

Abstract

In pattern recognition fields classifiers, computer programs that take decisions, are
extensively used. Finding the right problem representation can make a huge difference
to a classifier the study of data transformations is therefore important. Taking different
opinions before reaching to a final decision is an important part of the decision making
process. Ensembles are combination of multiple classifiers. Ensembles have been
shown to produce better results than individual models, if the models, in the ensembles,
are accurate and diverse. Ensemble approaches allow us to increase robustness by
using multiple different and complementary representations. In this thesis, we study
data transformation techniques from the perspective of decision tree ensembles.

Random Linear Oracle is an ensemble technique introduced by Kuncheva and Ro-
driguez [68]. We demonstrate that RLO can be viewed as a data transformation tech-
nique using random projections. This observation allows us to develop various exten-
sions and a generalized RLO framework.

Decision Trees suffer from two significant problems - “representation” and “data
fragmentation”. The first refers to the fact that Decision trees have limitation in learn-
ing non-orthogonal problems (complex problems). The second refers to small number
of learning examples at the lower level of decision trees, hence statistical decisions at
lower levels of decision trees are not reliable. We present two novel transformation
methods to address each of these problems. The first projects from a continuous space
to a categorical space (Random Discretization, Chapter 5) and is helpful in creating di-
verse decision trees and ensembles of these trees can learn non-orthogonal problems.
The second projects from a categorical space to a continuous space (Random Ordinal-
ity, Chapter 6) and is useful to reduce the data fragmentation problem for multi-valued
categorical datasets.

One of the advantages of using these data transformation techniques to create en-
sembles of decision trees is that these data transformations can be combined with the
existing ensemble methods to improve them.

18

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institu-
tion of learning.

19

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either
in full, or of extracts, may be made only in accordance with instructions given by the
Author and lodged in the John Rylands University Library of Manchester. Details may
be obtained from the Librarian. This page must form part of any such copies made.
Further copies (by any process) of copies made in accordance with such instructions
may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this
thesis is vested in the University of Manchester, subject to any prior agreement to the
contrary, and may not be made available for use by third parties without the written
permission of the University, which will prescribe the terms and conditions of any
such agreement.

Further information on the conditions under which disclosures and exploitation
may take place is available from the head of School of Computer Science.

20

Acknowledgements

I express my deep gratitude and sincere thanks to my research supervisor Dr. Gavin
Brown for his invaluable guidance, inspiring discussions, critical review, care and en-
couragement throughout this PhD work. His ideas, stimulating comments, interpreta-
tions and suggestions increased my cognitive awareness and have helped considerably
in the fruition of my objectives. I remain obliged to him for his help and able guid-
ance through all stages of this. His constant inspiration and encouragement towards
my efforts shall always be acknowledged.

My sincere thanks are due to my PhD advisor Dr. Jon Shapiro for his help and
sopport in defining my research problems.

I am also grateful to all Machine Learning Optimization (MLO) group staff mem-
bers, Dr. Neil Lawrence, Dr. Magnus Rattray, Dr. Joshua Knowles, Dr. Ke Chen,
Dr. Pedro Mendes, Dr. Richard Neville, Dr. Sridhar Rajagopalan and Xiaojun Zeng
for providing me all kind of supports without which this work would not have been
possible.

I am thankful to all MLO group members Kevin Sharp, Richard Allmendinger,
Mauricio Alvarez, Adam Pocock, Richard Stapenhurs, Ruofei He, Ahmad Salman,
Jennifer Withers, John Butterworth, Stefan Haflidason, Seemab Latif, Chong Liu,
Zarrar A Malik, Arslan Shaukat, Shihai Wang, Yun Yang for their affection and sup-
port during my research work. I am thankful to past MLO group members Richard
Pearson, Hao Wu, Gwenn Englebienne, Hussein Sharif for their help and support.

I am also equally grateful to Dr. L.I. Kuncheva, School of Computer Science,Bangor
University for inviting me to a workshop on Classifier Ensembles, Feature Selection
and fMRI Data Analysis in Bangor and for providing me feedback on my work. I am
thankful to J. J. Rodriguez,School of Informatics and Systems, University of Burgos,
Spain, for the useful discussion on ensemble methods. Special thanks to Mr. Chris
Whitaker, Mr Thomas Christy and Dr Ik Soo Lim (all from Bangor, University) for
organizing the conference.

21

My esteemed thanks are also due to my parents, whose sacrifices made me what
I am today and without their support it would have been impossible to complete this
research work. I would like to remember and thank to my brother and sister. Thanks
are also due to my wife for her moral support and helps. Special thanks and love for
my daughter Ayesha.

Debts being various, are not easy to remember, hence I convey my heartiest thanks
to all those who helped me or blessed me in making this milestone. I deeply regret
here for not mentioning these individuals.

22

Chapter 1

Introduction

In this chapter, we present the different problems studied in this thesis. We discuss our
proposed solutions to these problems. We also present the structure of the thesis in the
chapter.

1.1 A Committee Decision

Decision making is an important part of everyone’s life. Different processes are applied
to improve the accuracy of these decisions. One of the methods is to take the decision
of the person who is an expert in that problem domain. For example, if a person is ill
he takes the decision of a doctor. However, when the problem is complex, instead of
relying on one expert, people generally take decisions of many experts and the final
decision is taken on the basis of these decisions. By taking the decisions of various
experts, the accuracy and the confidence in the final decision are improved as we get
different views of the problem. For example, if a person is critically ill, generally a
team of doctors who are experts in different fields of medical science takes the decision.

Taking different opinions before reaching to the final decision is an important part
of the effective decision making process. A committee of experts, a decision by ma-
jority voting, taking a decision on the basis of different reviews (e.g. movie reviews,
product reviews etc.) etc. are the examples of such decision making processes.

Presenting the different views of the problem to the same person may improve the
decision of the person rather than presenting only one view. For example, supposing a
person has to decide about the quality of a car, if he decides only on the basis of the one
aspect of the car like the size of the car he may not make the right decision. However,
if he decides on the basis of different aspects of the car like design, size, colour, fuel

23

24 CHAPTER 1. INTRODUCTION

efficiency, maintenance cost etc., he may make better judgement about the quality of
the car.

The decision maker may have some weaknesses for example colour blindness; in
which he may not able to recognise the colour of the car properly. One possible so-
lution to this problem is that an expert who understands these weaknesses, suggests
the other properties of the car that the person can use in his judgement. This process
may improve the decision making capability of the person. My PhD thesis addresses
similar problems.

1.2 Data Transformation and Ensembles in Machine
Learning

Different classifiers have different properties. The performance of classifiers is depen-
dent on the problem representation. The data transformations is a process by which
the problem representation is changed. For example, the discretization process [32] is
used to convert a continuous dataset to a categorical dataset. Naive Bayes classifiers
have shown better performance with discretized datasets [32]. This suggests that the
data transformation is an important research field in machine learning.

Ensembles are a combination of multiple base models [29, 63, 67, 48, 90, 79] for
which the final classification depends on the combined outputs of individual models.
Classifier ensembles have been shown to produce better results than single models, if
the classifiers in the ensemble are accurate and diverse [48, 90].

There are different methods to create these ensembles. One popular method is to
present different problem representations to a classifier algorithm. We can train many
classifiers using this process. These classifiers are different because they are trained
on various problem representations. Their decisions are combined to get the final de-
cision. This final decision is generally better than a single classifier [67]. Several
methods have been proposed to create different problem representations.

In the present thesis, we study ensembles of decision tree classifiers [14, 80]. The
decision tree is one of the most popular classification algorithms in the pattern recog-
nition field [14, 80] because univariate decision trees algorithms are computationally
efficient and decision trees are able to generate understandable rules [14, 80]. Deci-
sion trees ensembles are very popular ensembles because decision trees are unstable

classifiers– classifiers whose output undergoes significant changes, in response to small

1.3. STATEMENT OF PROBLEMS TACKLED 25

changes in training data. If decision trees are trained with different training data rep-
resentations, decision trees will be diverse and the final result will be better than or
similar to a single classifier. Mansilla and Ho study the domain of dominant compe-
tence of various popular classifiers in a space of data complexity measurements. They
observe that the sophisticated ensemble classifiers tend to be robust for wider types of
problems and are largely equivalent in performance. Despite the fact that an ensemble
of decision trees requires many decision trees, the low computational cost of grow-
ing a single decision tree makes ensembles of decision trees attractive classification
algorithms.

1.3 Statement of Problems Tackled

Decision trees are very popular, however, decision trees have some weaknesses; a rep-
resentational problem [14, 16](an univariate decision tree does not learn non-orthogonal
decision surfaces properly) and a large data fragmentation [14, 35, 10] problem (de-
cisions have little or no statistical support) due to multi-way splits for multi-valued
categorical datasets.

1.3.1 Decision Tree Ensembles - The Representational Problem

For pure continuous datasets, decision trees may have representation problem. Gen-
erally decision trees like CART [14], C4.5 [80] etc. are univariate decision trees. At
each node, a univariate decision tree can take the decision only on the basis of a sin-
gle attribute. That restricts the representational power of decision trees. Any decision
surface that is not perpendicular to a attribute axis is approximated by these decision
trees. Very large decision trees can approximate these boundaries well. However, to
grow a very large decision trees we need a sufficiently large dataset. The lack of a
large dataset often restricts the representational power of a decision trees. Ensembles
of decision trees generally perform better than a single decision trees as they have bet-
ter representational powers (an ensemble of small decision trees act as a large decision
tree [29]) (Fig. 1.1). The development of ensembles that have very good representa-
tional power is the key to good performance of ensembles.

Linear multivariate decision trees (at each node a linear multivariate decision tree
can take the decision on the basis of a linear combination of the attributes) algorithms
[14, 16] is the other strategy to improve the representational power of decision trees.

26 CHAPTER 1. INTRODUCTION

Figure 1.1: The left figure shows the true diagonal decision boundary and three stair-
case approximations to it (of the kind that are created by decision tree algorithms). The
right figure shows the voted decision boundary, which is a much better approximation
to the diagonal boundary. The figure is taken from [29].

Linear multivariate decision trees have orthogonal (orthogonal to a attribute axis) and
non-orthogonal decision surfaces. However, it is computational expensive (NP-hard)
to create multivariate decision trees [49].

Omnivariate decision trees [98, 99] can take decisions on the non-linear combi-
nation of attributes. They have better representational power than univariate decision
trees and linear univariate decision trees. However, they are the most computationally
expensive.

1.3.2 Decision Tree Ensembles - Data fragmentation problem

Variables having categories without a natural ordering are called categorical [3]. The
analysis of categorical datasets is quite popular in bioinformatics, social sciences, mar-
keting research etc. [3, 92]. Decision trees can handle categorical data well. However,
datasets with multi-valued categorical attributes can cause major problems for decision
trees. While multi-way splits produce a more comprehensible tree, they may increase
the data fragmentation problem [94]; the continuous partitioning of the training set at
every tree node reduces the number of examples at lower-level nodes. As decisions in
the lower levels nodes are based on increasingly smaller fragments of the data, some
of them may not have much statistical significance. Creating binary splits by splitting
the attribute values into two groups is a method to avoid multi-splits. Breiman [14]
suggests exhaustive search to find the best binary split. If the number of attribute val-
ues is |A| then the number of nontrivial binary splits is given by 2(|A|−1)− 1. Selecting

1.3. STATEMENT OF PROBLEMS TACKLED 27

the best split by this method is computationally expensive. Geurts et al. [47] suggest
a randomized method to create binary attributes from the multi-valued attributes; they
divide the attribute values randomly into the two categories. As in this method the
node split decision is taken without considering the output, the classification accuracy
of the tree may be poor.

1.3.3 Our Approach

In the thesis, we present various data transformation methods that are designed for
decision tree ensembles keeping in view their (decision trees) weaknesses. In other
words, our methods act as the experts who understand the weaknesses of the classifiers
(decision trees) and present the different problem representations so that the classifiers
can use these problem representations in a proper way. Fig. 1.2 shows the framework
of the thesis.

In this thesis, first we study and propose ensemble methods for better represen-
tational power. We investigate how we can create ensemble of linear multivariate

decision trees by using univariate decision tree algorithms. We then show that this
method is a generalization of an existing ensemble method; the random linear ora-
cle framework [68]. We then present random discretization methods to create diverse
discretized datasets. In these methods, bin boundaries are created randomly. We in-
troduce a novel ensemble method, in which each decision tree is trained on one dataset
from a pool of different discretized datasets created by random discretization methods.
Different decision trees trained on datasets having different discretization boundaries
are diverse. These ensembles are simple but quite accurate. Theoretical analysis shows
that these ensembles have good representational power and can approximate any de-
cision surface. We then combine two proposed approaches (ensemble of linear mul-
tivariate decision trees and random discretized ensembles) to create a solution that is
better than both of these solutions.

Next, we propose a method to create diverse and accurate binary decision trees
that reduces the data fragmentation problem without a large computational complexity.
This technique is based on the data manipulation by imposing random ordinality on

categorical attribute values. This implies a random projection of a categorical attribute
into a continuous space. A decision tree that learns on this new continuous space is
able to use binary splits, hence reduces the data fragmentation problem. Decision
trees trained on the diverse datasets are themselves diverse and accurate. A majority-
vote ensemble is then constructed with several trees. RO ensembles resist the data

28 CHAPTER 1. INTRODUCTION

Figure 1.2: The framework of the thesis. Gray colour boxes show research works
carried out in this thesis.

1.4. THESIS STRUCTURE 29

fragmentation problem, and provide significantly improved accuracies over current
ensemble methods.

1.4 Thesis Structure

The present thesis is divided into 7 chapters. In Chapter 2, we present the relevant
literature survey for the present thesis. First, we discuss the decision tree algorithms.
We also present various popular split criteria. Linear multivariate decision trees are
discussed in detail. Next, we discuss the philosophy of ensemble methods. Different
strategies, used to create ensembles, are discussed. Furthermore, we review various
popular ensemble methods.

In Chapter 3, various popular data transformation techniques are discussed. We
also present the use of different data transformation techniques in the creation of en-
sembles.

In Chapter 4, we use the random projection technique to study the random linear
oracle (RLO) framework that is proposed to improve the performance of various en-
semble methods [68, 84]. We propose two new variants of the random linear oracle
approach (Learned-Random Linear Oracle and Multi-random linear oracle) that extend
the philosophy of the RLO approach. The comparative study of these three methods is
presented, which suggests that the Multi-random linear oracle method generally gives
superior performance.

In Chapter 5, we suggest a method Random Discretization (RD) to create diverse
discretized datasets. We introduce a novel ensemble method Random Discretized En-
sembles (RDEns), in which each decision tree is trained on one dataset from the pool
of different datasetss created by RD. Ensembles created by using the RD process are
simple but quite accurate. The theoretical analysis shows that RD ensembles have
good representational power and can approximate any decision surface. We discuss
the results of experiments to study the performance of RDEns against other popu-
lar ensemble techniques. Results suggest that RDEns matches or outperforms Bagging
and Random Forests and is competitive with AdaBoost.M1. We also discuss the exper-
iments on the noisy data and also present the analysis of RD trees and RD ensembles.

We then present Random Projection Random Discretized Ensembles (RPRDE) to
create ensembles of multivariate decision trees using a univariate decision tree algo-
rithm. This method combines the RD technique and the Multi-random linear oracle
method. We discuss the results of our experiments comparing RPRDE with other

30 CHAPTER 1. INTRODUCTION

popular ensemble methods. Detailed results suggest that RPRDE performs similar or
better than other ensemble methods. However, it has more competitive advantages at
smaller ensembles. We also present results of experiments on the noisy data which sug-
gests that RPRDE is quite robust to the noisy data. The accuracy-diversity experiments
are presented to have better understanding of RPRD ensembles.

In Chapter 6, we describe a data transformation technique, Random Ordinality
(RO), for multi-valued categorical attributes. We study the attributes, created by using
the Random Ordinality (RO) technique, by using the information-theoretic framework.
The study suggests that these RO attributes are good for classification. Decision trees
created by using RO attributes are binary, thereby reduce the data fragmentation prob-
lem. We create RO ensembles by using RO trees as these are diverse. The proposed
methods outperforms other popular ensemble methods. We also present results of
controlled experiments to study how RO trees are affected by the data fragmentation
(also called of curse of dimensionality) problem, the error-diversity trade-off, and the
applicability of a recently proposed theoretical framework [43] in predicting the per-
formance of Random Ordinality ensembles. We also present the results of combining
RO with Bagging and AdaBoost.M1.

Chapter 7 concludes the thesis by summarizing the contributions of the present
thesis and present future work.

1.5 Publications Resulting from the Thesis

The work in the present thesis resulted in the following publications:
(1)- Ahmad A. and Brown G., Random Ordinality Ensembles : A Novel Ensemble

Method for Multi-Valued Categorical Data, Intl. Workshop on Multiple Classifier
Systems. Iceland, June 2009.
(2)- Ahmad A. and Brown G., A study of Random Linear Oracle, Intl. Workshop on
Multiple Classifier Systems. Iceland, June 2009.

1.6. NOTATIONS 31

1.6 Notations

Symbols

T Training data
x An input vector
k The number of classes in the training dataset
C Class attribute
Ci(i = 1..k) Classes
n The number of data points in the training dataset
m The number of attributes in the training dataset
A An attribute with different attribute values a1, a2, .., a|A|
]T1,]T2, ..,]T|A| The partition of the training data by attributes
Di ith Decision tree of an ensemble
M Ensemble size
d The number of new features created by using random projection
R Random matrix for random projection
ρ One dimensional data created using random projection
rij Elements of the random matrix R
Λ Random Discretization
ϑ The height of a tree
θ1 The observed agreement between the classifiers
θ2 Agreement-by-chance between the classifiers
κ The measure of the diversity of the two classifiers
q
(j)
i The difference between the error rates of the two classifiers on fold j of

replication i
σ The average correlation of the errors of the base models
p(Ci) A priori probability of the class Ci

H(C) Entropy of the class attribute
H(C|A) The average specific conditional entropy of C
I(C; A) The reduction in uncertainty (entropy) about the value of C when

we know the value of A
E(X) The expected value of X

32 CHAPTER 1. INTRODUCTION

Abbreviations
RP Random Projection
RLO Random Linear Oracle
LRLO Learned-Random Linear Oracle
Multi-RLE Multi-Random Linear Oracle
RD Random Discretization
ERD Extreme Random Discretization
RDEns Random Discretized Ensembles
RPRD Random Prpjection Random Discretization
RPRDE Random Prpjection Random Discretization Ensembles
RO Random Ordinality
ROE Random Ordinality Ensembles
RS Random Subspaces
RF Random Forests

Chapter 2

Literature Survey

This chapter gives an introduction to decision tree classifiers. It discusses the motiva-
tion of ensembles and summarizes various ensemble techniques. In the end, several
data transformation techniques are described along with their applications for creating
ensembles of classifiers.

2.1 Supervised Learning

In the pattern recognition field, a pattern is defined by the feature xi which represents
the pattern and its related value yi. For a classification problem, yi represents a class
or more than one class to which the pattern belongs. For a regression problem, yi is
a real value. For a classification problem, the task of a classifier is to learn from the
given training dataset in which patterns with their classes are provided. The output
of the classifier is a model or hypothesis h that provides the relationship between the
attributes xi and the class yi. This hypothesis h is used to predict the class of a pattern
depending upon the attributes of the pattern.

Neural networks [8, 74] , naive Bayes [8, 74], decision trees [14, 80] and support
vector machines [93, 17] etc. are popular classifiers. In this thesis, we concentrate on
decision trees.

2.2 Decision Trees

Decision trees are very popular tools for classification [14, 80]. As discussed in Chap-
ter 1, the attractiveness of decision trees is due to the fact that, decision trees represent
rules. Rules can readily be expressed so that humans can understand them. Decision

33

34 CHAPTER 2. LITERATURE SURVEY

Figure 2.1: An example of a decision tree.

trees provide the information about which attributes are most important for prediction
or classification. A decision tree is in the form of a tree structure, where each node is
either:

• A leaf node - indicates the value of the target class of examples, or

• A decision node - specifies some test to be carried out on a single attribute-value,
with two or more than two branches and each branch has a sub-tree.

A decision tree can be used to classify an example by starting at the root of the tree
and moving through it until a leaf node, which provides the rules for classification of
the example. For example, in Fig. 2.1 we have three rules for a positive credit rating
or a negative credit rating.

1. If income > 20000 units, the credit rating positive.

2. If income <= 20000 units and the past credit history = good, the credit rating
positive.

3. If income <= 20000 units and the past credit history = bad, the credit rating
negative.

Decision trees are constructed in a top-down manner. The ID3 decision tree learn-
ing algorithm is shown in Fig. 2.2. It starts with a node that grows recursively. At each

2.2. DECISION TREES 35

ID3 (Examples, Target Attribute, Attributes)
Create a root node for the tree
if All examples are positive then

Return the single-node tree Root, with label = positive.
else if All examples are negative then

Return the single-node tree Root, with label = negative.
else if The number of predicting attributes is empty then

Return the single node tree Root, with label = most common value of the target
attribute in the examples.

else
Begin
Find the best attribute A by using the selected splitting criterion (the information
gain ratio).
Decision Tree attribute for Root = A.
for all Possible values, ai, of A do

Add a new tree branch below Root, corresponding to the test A = ai.
Let Examples(ai), be the subset of examples that have the value ai for A
if Examples(ai) is empty then

Below this new branch add a leaf node with label = most common target
value in the examples.

else
Below this new branch add the subtree ID3 (Examples(ai), Target Attribute,
Attributes - {A})

end if
end for
End

end if
Return Root.

Figure 2.2: ID3 decision tree algorithm.

36 CHAPTER 2. LITERATURE SURVEY

node it checks two conditions.
(1) If all the examples are of the same class, then the algorithm just returns a leaf node
of that class.
(2) If there are no attributes left with which to construct a nonterminal node, then the
algorithm has to return a leaf node.
It returns a leaf node with the class with most likelihood. If none of these conditions
is true, then the algorithm finds the best attributes using the selected split criteria to
split the training points available at the node into different groups. For a binary split
there are two groups and for a multi-way split there are more than two groups. Each
group of data points form a new node. These new nodes will be added as children to
the node. The decision tree algorithm is called recursively on each of these new nodes.
C4.5 and CART are popular decision tree algorithms;

1. C4.5 Decision trees - C4.5 [80] made a number of improvements to ID3 (pre-
sented in Fig. 2.2). It can handle both continuous (see section 2.2.2 for details)
and categorical attributes, whereas ID3 can handle only categorical attributes. In
order to avoid overfitting, it uses pruning trees after creation - C4.5 goes back
through the tree once it’s been created and attempts to remove branches that do
not help by replacing them with leaf nodes, whereas ID3 decision trees have
no pruning. In this thesis, we used J48 (Weka [96] implementation of C4.5)
decision trees.

Decision Stumps - A decision stump is a one level decision tree [96]. If m

attributes are present in a dataset, a decision stump selects the attribute that gives
the best information gain ratio.

2. Classification and regression trees (CART) - The basic methodology of divide
and conquer, described in C4.5, is also used in CART [14]. The differences are in
the tree structure, the splitting criteria and the pruning method. CART constructs
trees that have only binary splits, whereas C4.5 decision trees may have multi-
way node splits for multi-valued categorical attributes. CART decision trees
use the Gini index as the splitting criterion whereas C4.5 decision trees uses the
information gain ratio as the splitting criterion. C4.5 decsion trees and CART
have different pruning methods. The time complexity of the pruning step when
10-fold cross- validation is used is a factor of 10 more expensive for CART than
C4.5’s pruning, but it does tend to produce smaller trees [77].

2.2. DECISION TREES 37

2.2.1 Splitting Criteria

The splitting criterion in the decision tree algorithm is used to test all available at-
tributes at each decision node in the tree. The goal is to select the attribute that is
most useful for classifying examples. Different split criteria have been suggested. The
information gain and the information gain ratio are two popular split criteria [80].
The CART [14] procedure proposed by Breiman uses the Gini index as its splitting
criterion.

The information gain is a popular split criterion. It is derived using information
theory.

If a dataset T , with the class attribute C, contains k classes (Ci for i = (1, 2, ..., k))
and T is partitioned into]T1,]T2, ...,]T|A| subsets by an attribute A with |A| different
values, (a1, a2,a|A|).

The entropy of the message that identifies the class of a data point in the sample T

is

H(C) = −
k∑

i=1

p(Ci) log2 p(Ci), (2.1)

where p(Ci) =
|Ci|
|T | .

If T is partitioned by the attribute A, the entropy is

H(C|A) =

|A|∑
v=1

|]Tv|
|T | H(]Tv). (2.2)

The information gain I(A; C) of a given attribute A with respect to the class at-
tribute C is the reduction in uncertainty (entropy) about the value of C when we know
the value of A,
The information gain I(A; C) is defined as

I(A; C) = H(C)−H(C|A). (2.3)

The information gain is biased for attributes with large number of attribute values.
The information gain ratio overcomes this weakness of gain ratio by also taking into
account the potential information from the partition itself. The information gain ratio
penalizes the large number of branches. The gain ratio is defined as

Gain ratio = I(C; A)/H(A), (2.4)

38 CHAPTER 2. LITERATURE SURVEY

Data Point Attribute A Class
A 1 +
B 2 +
C 3 +
D 4 -
E 5 -
F 6 -
G 7 -
H 8 -
I 9 +

Table 2.1: Continuous data.

where H(A) is the partition entropy.

The Gini index is another popular split criterion. It is defined as

Gini(C) =
∑

Ci 6=Cj

p(Ci)p(Cj). (2.5)

If T is partitioned by the attribute A, the Gini index is

Gini(A) =

|A|∑
v=1

|]Tv|
|T |

∑

Ci 6=Cj

p(Ci|]Tv)p(Cj|]Tv). (2.6)

Gini gain is defined as

Gini gain= Gini(C) - Gini(A). (2.7)

The attribute with best Gini gain is used to split the data.

2.2.2 Node splits for Continuous Attributes

For a continuous attribute, the split is selected in terms of a threshold point, creating
a binary split. If an attribute Ai has numeric values, the form of the test is Ai ≤ θ

with outcomes true and false, where θ is a constant threshold. The θ is selected that
gives the maximum information gain ratio. Possible values of θ are found by sorting
the distinct values of Ai that appear in the training set, then identifying one threshold
between each pair of adjacent values. If the cases in the training set have N distinct
values for Ai, N -1 thresholds are considered. Fayyad and Irani [34] show that the

2.2. DECISION TREES 39

value θ for attribute Ai that minimizes the average class entropy for a training set must
always be a value between two examples of different classes in the sequence of sorted
examples. This result decreases the number of possible splits. For example in table
2.1 for the best split point we need to check only two split points; one between C and
D, and the second between H and I. The point between C and D will be selected as the
spit point in a C4.5 decision tree as it gives more information gain ratio.

2.2.3 Binary Split or Multi-Way Split for Categorical Attributes?

Whether there should be a binary split or multi-way split at each decision node has
been a question of extensive research [56, 14, 80, 35, 10, 81]. As discussed in Chapter
2, While multi-way splits produce a more comprehensible tree, the high branching
factor can lead to the data fragmentation problem, where decisions have little or no
statistical support [14, 35, 10, 94].

For example in the Tennis data (Table 2.2) , if we have multi-split on the basis of
the Outlook attribute, we have three branches. The number of data points in the Sunny
branch is 5, the number of data points in the Rain branch is 5 and the number of data
points in the Overcast branch is 4 (Fig. 2.3). However, if we create a binary split as
given in Fig. 2.3, one branch for Sunny and another branch for Rain/Overcast then the
number of data points in the second branch is 9. As the number of data points is large
we have better estimates in the binary split case. However, creating binary split is not
straightforward as there is no intrinsic order for categorical values.

As a multi-way split (for multi-valued categorical attributes) with the Gini index
favours those with more values, CART enforces binary splits to overcome this problem.
CART procedure builds binary trees; the values of the categorical attribute at the node
have to be divided into two groups. If the number of attribute values is |A| then the
number of nontrivial binary splits is given by,

|A|−1∑

k=1

(|A|
k

)
− 2

2
= 2(|A|−1) − 1. (2.8)

For example, when the attribute cardinality is 3, the number of splits is 3, however,
when the attribute cardinality is 10, the number of splits is 511 (Fig. 2.4). This shows
that the selecting the best split by this method, with a large attribute cardinality, is quite
computationally expensive. Breiman [14] shows that for two class problems the best
split can be found by examining only |A| − 1 possibilities.

40 CHAPTER 2. LITERATURE SURVEY

Data Point Outlook Temperature Humidity Wind Play Tennis
1 Sunny Hot High Weak No
2 Sunny Hot High Strong No
3 Overcast Hot High Weak Yes
4 Rain Mild High Weak Yes
5 Rain Cool Normal Weak Yes
6 Rain Cool Normal Strong No
7 Overcast Cool Normal Strong Yes
8 Sunny Mild High Weak No
9 Sunny Cool Normal Weak Yes

10 Rain Mild Normal Weak Yes
11 Sunny Mild Normal Strong Yes
12 Overcast Mild High Strong Yes
13 Overcast Hot Normal Weak Yes
14 Rain Mild High Strong No

Table 2.2: Tennis Data.

C4.5 as proposed by Quinlan [80] uses the information gain ratio as the splitting
criterion. C4.5 builds a binary tree for continuous data. There are two methods in C4.5
to handle multi-valued categorical attributes. In the first, it allows the multi-way split
of nodes (one branch for each attribute value). In the second method, it uses a greedy
approach to iteratively merge the attribute values into two groups. Ho and Scott [53]
study various modifications of the grouping method, suggested for C4.5. They use
different grouping criteria; the information gain ratio and a combination of χ2 and
Cramer’s V [3]. They also study the effect of global (for all the dataset) and local (at
the node) grouping of attribute values. Results suggest that the local methods are not
consistently more accurate than the multi-way splits, and generally global methods are
less accurate.

Another way to obtain a binary split for a multi-valued categorical attribute is to
partition the data points using an attribute value [14, 56, 35]. In this method, all the
data points with that attribute value form one group, whereas the other group is formed
with the other examples. Fayyad and Irani [35] propose a binary tree hypothesis; A top

down, non-backtracking decision tree generation algorithm (i.e. using greedy search)

that uses any appropriate selection measure (such as entropy or any impurity measure)

to branch a single attribute pair rather than on all values of the selected attribute, is

likely to lead to a tree with fewer leaves for any given dataset. Fayyad and Irani [35]
were not able to prove or disprove the stronger version of the hypothesis; “will always

2.2. DECISION TREES 41

Figure 2.3: An example of a multi-way split and a binary split for the Tennis data for
the Outlook attribute.

lead” instead of “is likely to lead”. Kononenko [66] presents a counter example to the
stronger version of this binary tree hypothesis.

Geurts et al. [47] suggest a randomized method to create binary splits from the
multi-valued attributes; it draws a random subset of its possible values. As in this
method, the division of attribute values is done without considering the output, the
classification accuracy of the tree may be poor.

42 CHAPTER 2. LITERATURE SURVEY

3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Attribute Cardinality

N
um

be
r

of
 p

os
si

bl
e

bi
na

ry
 s

pl
its

Figure 2.4: Graph for number of possible splits against the attribute cardinality.

2.3 Types of Decision Nodes

Depending upon the decision node of a tree, decision trees for continuous attributes
can be divided into three categories:

1. Univariate Decision Trees - At each node, they take the decision on one at-
tribute. They create orthogonal splits (orthogonal to the attributes) (Fig. 2.5).
They are computationally efficient, however, if the decision boundaries are not
orthogonal to a attribute’s axis, they are generally not very accurate. C4.5 [80]
and CART [14] are examples of these kinds of trees.

2. Linear Multi-variate Decision Trees - Multivariate decision trees [14, 16]
overcome the representational limitation of univariate decision trees (Fig. 2.5).
Linear multivariate decision trees allow the node to test a linear combination of
the numeric attributes (2.5). This test can be presented as,

m∑
i=1

cixi ≤ θ (2.9)

where xi are the numeric attributes, ci are the corresponding real valued coeffi-
cients, and θ is a numeric constant. These trees are also called oblique decision

2.3. TYPES OF DECISION NODES 43

trees as they uses oblique (non-axis-parallel) hyperplanes to partition the data.
In some problem domains, multivariate decision trees performs better than uni-
variate decision trees [59]. However, oblique trees are not very popular as it is
computationally expensive to create these trees [49].

Figure 2.5: Examples of univariate(solid line), linear multivariate(dotted line) and non-
linear multivariate(dashed line) splits.

Different approaches have been proposed to create oblique decision trees. Breiman
et al. [14] suggest a method to create multivariate decision trees that uses a
perturbation algorithm. SADT [49] uses simulated annealing to compute hy-
perplanes. Simulated annealing introduces an element of randomness so SADT
generates a different decision tree in each run. Heath et al. [50] use these trees
to create committees of decision trees. OC1 [76] improves SADT by combining
deterministic hill climbing with randomization. Cantu-Paz and Kamath [19] use
evolutionary algorithms to induce oblique decision trees. Ltree [44] and HOT
[59] are able to define decision surfaces both orthogonal and oblique to the axes
defined by the attributes of the input space. In these approaches, the axis-parallel
tree inducer remains unchanged, but new oblique attributes are added. Gama
[45] introduces a simple unifying framework for multivariate tree learning. This
framework combines a univariate decision tree with a linear function by means
of constructive induction. Decision trees derived from the framework are able to
use decision nodes with multivariate tests, and leaf nodes that make predictions
using linear functions.

3. Omnivariate Decision Trees - At each node, they can take decisions on the non-
linear combination of attributes (Fig. 2.5). They have better representational

44 CHAPTER 2. LITERATURE SURVEY

power than univariate decision trees and linear univariate decision trees. How-
ever, they are the most computationally expensive. Non-linear decision nodes
can generate an arbitrarily complex decision boundary and provide the strongest
discriminant power. However, these trees can be easily influenced by the noise
in the data. [98, 99] are the examples of these kinds of trees.

2.4 Motivation for Classifier Ensembles

Ensembles are a combination of multiple base models [29, 63, 67, 48, 90, 79]. Final
classification results depend on the combined outputs of individual models. Classifier
ensembles have shown to produce better results than single models, if the classifiers,
in the ensembles, are accurate and diverse[48]. A classifier is accurate, if it performs
better than random guessing of the test data point class. Two classifiers are diverse if
they make different errors on data points. Ensembles perform better when base mod-
els are unstable–classifiers whose output undergoes significant changes in response to
small changes in the training data. Decision-trees, neural networks and rule learning
algorithms are all unstable. Support vector machine and naive Bayes algorithms are
generally very stable. There are many reasons for using an ensemble system:

1. Statistical Reason - Due to the limited amount of the data, the learning algo-
rithm can find many hypotheses with similar training accuracy. Few of these
classifiers may be poor performing (poor generalization accuracy). By construct-
ing an ensemble out of all these classifiers, we reduce the risk of selecting a poor
performing classifier because in an ensemble, we combine the outputs of all the
classifiers in the ensemble [29]. For example in Fig. 2.6 (top left) the outer
surface denotes hypothesis space H . Inner surface denotes all the hypotheses
that give good accuracy for the given training dataset. f is the true hypothesis,
one can get better approximation of the true function if the average of accurate
hypotheses is taken.

2. Computational Reason - Learning algorithms that work by performing some
form of local search, may get stuck in the local minima, so chances are that,
we do not get the optimal classifier. For example, optimal training of neural
networks and decision tree is NP-hard [9, 57]. If we combine the outputs of
many classifiers for final decision, there is a high probability that it gives a better
approximation of the true unknown function than any of the individual classifiers

2.4. MOTIVATION FOR CLASSIFIER ENSEMBLES 45

Figure 2.6: Three reasons why an ensemble works better than a single classifier. the
figure is taken from [29].

(Fig 2.6 (top right)).

3. Representational Reason - Sometimes, decision boundaries lie outside the space
of functions that can not be learned by the chosen classifier model. Weighted
sum of different hypotheses can have better representational power (Fig. 2.6
(bottom)). Dietterich [29] uses C4.5 trees to explain this for the learning prob-
lem in which the true decision boundary is not orthogonal to coordinate axis
(Fig. 1.1). At each node a univariate decision tree can take the decision only
on the basis of a single attribute. That restricts the representational power of a
decision trees. Any decision surface that is not perpendicular to the attribute axis
is approximated by these decision trees. Very large decision trees can approx-
imate these boundaries well. However, to grow a very large decision trees we
need a sufficiently large dataset. The lack of a large dataset often restricts the
representational power of a decision trees. Large decision trees suffer from the
overfitting problem. Ensembles of decision trees generally perform better than a

46 CHAPTER 2. LITERATURE SURVEY

single decision trees as they have better representational power (an ensemble of
small decision trees act as a large decision tree [29]).

4. Data Fusion-If the data is coming from various sources, where the attributes are
different (heterogeneous attributes), it is difficult for a single classifier to learn
on this data correctly. In such cases, each dataset from one source can be used
to train a different classifier.

5. Missing Data - The missing data is an important problem in real datasets. En-
semble learning provides an elegant solution to this problem [27]. Each of the
classifiers in the ensemble is trained on a different subset of the available attribute
space. Only those classifiers whose training dataset did not include the currently
missing attributes are used to classify data points with missing attributes.

2.5 Theoretical Models for Classifier Ensembles

Many studies have shown the advantages of combining classifiers over the single clas-
sifiers [29, 63, 67, 48, 90]. The superior performance of an ensemble can be explained
by using the bias-variance model proposed by Tumer and Ghosh [90]. They show for
an ensemble that computes the average of the base models’ output, if the correlations
of the errors made by the base models decrease the variance of the error of the ensem-
ble decreases. For uncorrelated base models, the variance of the error of the ensemble
is less than the variance of the error of any single base model. They develop following
relationship-

Eadd(average) =
(1 + σ(M − 1))Eadd

M
, (2.10)

where,

• Eadd is the average additional error of the base modes, that is due to the learn-
ing with finite training dataset (beyond the Bayes error, which is the minimum
possible error that can be obtained),

• Eadd(average) is the additional error of the ensemble based on the base models,

• σ is the average correlation of the errors of the base models,

• M is the number of classifiers in the ensemble.

2.6. METHODS OF CONSTRUCTING CLASSIFIER ENSEMBLES 47

This relationship suggests that performance of an ensemble depends on σ. If all the
models are same (σ = 1), we are not getting any improvement. Whereas, when σ = 0,
the added error is reduced by a factor of M , relative to base model added error. This
shows that creating the diverse base models is necessary for the good performance of
the ensembles.

Fumera et al. [42] suggest an analytic relationship between the expected misclas-
sification probability of the ensemble and the expected misclassification probability
of an individual classifier, as a function of the ensemble size. Their theoretical re-
sults show that the expected misclassification probabilities of Bagging [11] has the
bias component as the bias component of the base model, whereas the variance com-
ponent is reduced by a factor M . They also suggest that this relationship is true for all
ensemble methods based on randomization. They develop the following relationship
for the ensemble classification error, the following relationship suggests that as we in-
crease the size of the ensemble, the variance part of the error (hence the total error)
gets reduced.

E = E(B) +
E(V)

M
, (2.11)

where,

• E is the classification error of ensemble

• E(B) corresponds to the sum of the Bayes error and of the bias component of
the error,

• E(V) is the variance part of the error.

2.6 Methods of Constructing Classifier Ensembles

There are five popular approaches for creating classifier ensembles.

2.6.1 Changing the Distribution of Training Data Points

In this approach, each classifier, in the ensemble, is generated using a different sample
of the training sets. Bagging [11] and Boosting [40, 46] are the examples of this kind
of approach. This is a general approach and works with any classifier.

48 CHAPTER 2. LITERATURE SURVEY

2.6.2 Changing the Attributes Used in the Training

In this approach, the attribute space of dataset is manipulated. Each classifier is trained
on different attribute sets. These attributes may be from the training data or new at-
tributes that are created. Random Subspaces [54] and Rotation Forests [83] are the
examples of this approach.

2.6.3 Output Manipulation

In this approach, the output of the training data is manipulated to create diverse datasets.
Error-correcting codes [31] and introducing noise in the output [12] are the examples
of this approach.

Error-correcting codes is useful for multi-class problems. Suppose the given learn-
ing problem has K classes, then new learning problems can be created by randomly
partitioning the K classes into two subsets; K1 and K2, where K2 = K - K1 and K1

and K2 are subsets of K classes. For example, if a dataset has 5 classes, {1, 2, 3, 4,
5}, we may have random partitions like K1= {1, 3, 4} and K2 = {2, 5}. The input
data is relabeled so that all the original classes in the subset K1 are given the new label
1, whereas the original classes in the subset K2 are given the new label 2. In other
words, a multi-class problem is converted to a two-class problem. The new relabeled
data is then given to a classifier algorithm that generates a classifier hi. By repeating
this process L times, we create L different classifiers (by creating L different subsets
K1 and K2), these classifiers are combined to create an ensemble. During testing, each
classifier gives a vote to a class depending upon whether the class is present in the
predicted new class, for example, if the predicted class is 1 then all the classes present
in K1 will get one vote. The class with the maximum number of votes is the final class.

Breiman [12] introduces a ensemble method in which a random noise is introduced.
To add classification noise at a rate r, a fraction r of the instances is randomly cho-
sen and their class labels are changed to be incorrect, choosing uniformly from the
set of incorrect labels. Diverse datasets are created with different random noise. Di-
verse datasets create diverse classifiers. These classifiers are combined to create an
ensemble.

2.6.4 Injecting Randomness into the Learning Algorithm

This technique is popular in creating decision tree ensembles. In a decision tree, split
attributes and split points are selected that optimize the splitting criterion. Different

2.7. SOME POPULAR ENSEMBLE METHODS 49

methods have been proposed to introduce randomness in node splitting criterion. Diet-
terich [30] proposes an approach that randomly selects a test among the K best splits.
In Random Forests [13], the split attributes are selected among the K randomly se-
lected attributes. Extremely Randomized Trees, proposed by Geurts [47], consist of
randomizing strongly both attributes and cut-points while splitting a tree node. In this
approach, at each level of the tree, K attributes are randomly selected, each attribute
is split randomly. Out of these K splits, the best split, based on the split criterion, is
selected for that level. In this approach, the split is independent of the output (random
split). PERT and Random Tress [33] are the other examples of this kind of ensembles.

2.6.5 Combination of Different Ensemble Methods

Some of the ensemble methods are based on different mechanisms like Bagging [11],
AdaBoost.M1[39] and Random Subspaces [54] etc.. Whereas, some of the ensemble
methods combine techniques that have different mechanisms, for example Random
Forests [13] combine Bagging with Random Subspaces, MultiBoosting [95] combines
Bagging with AdaBoost and Rotation Forest [83] combines randomization in the at-
tribute space division with Bagging. The basic idea behind these ”hybrid” ensemble
techniques is that as the mechanisms differ for different ensemble methods, their com-
bination may out-perform either in isolation.

2.7 Some Popular Ensemble Methods

In this section we discuss some of the popular classifier ensemble methods in detail.

2.7.1 Bagging

Bagging (Bootstrap Aggregation) [11] generates different bootstrap training datasets
from the original training dataset and uses each of them to train one of the classifiers
in the ensemble. For example, to create a training set of N data points, it selects one
point from the training dataset, N times without replacement. Each point has equal
probability of selection. In one training dataset, some of the points get selected more
than once, whereas some of them are not selected at all. Different training datasets
are created by this process. When different classifiers of the ensemble are trained on
different training datasets, diverse classifiers are created. Bagging does more to reduce
the variance part of the error of the base classifier than the bias part of the error.

50 CHAPTER 2. LITERATURE SURVEY

2.7.2 Boosting

Boosting [40, 46] generates a sequence of classifiers with different weight distribution
over the training set. In each iteration, the learning algorithm is invoked to minimize
the weighted error, and it returns a hypothesis. The weighted error of this hypothesis
is computed and applied to update the weight on the training examples. The final
classifier is constructed by a weighted vote of the individual classifiers. Each classifier
is weighted according to its accuracy on the weighted training set that it has trained on.

The key idea, behind Boosting is to concentrate on data points that are hard to
classify by increasing their weights so that the probability of their selection in the next
round is increased. In subsequent iteration, therefore, Boosting tries to solve more
difficult learning problems.

Boosting reduces both bias and variance parts of the error. As it concentrates on
hard to classify data points, this leads to the decrease in the bias. At the same time
classifiers are trained on different training data sets so it helps in reducing the vari-
ance. Boosting has difficulty in learning when the dataset is noisy. In each iteration,
the weights assigned to the noisy data points increases so in subsequent iteration it con-
centrates more on the noisy data points; it leads to overfitting of the data. AdaBoost.M1
[40, 39], AdaBoost.M2 [39], Arcx4 [15] are some of the examples of boosting algo-
rithms. Breiman [15] shows that the process of selecting data samples (concentrating
on hard to classify data objects) is the reason of the better performance of classifier
ensembles, not the method by which the data set is produced. To show this point, a dif-
ferent procedure is used to make data samples such that the hard to classify data points
get more weight. Similar results as produced by AdaBoost.M1 are achieved with this
procedure.

2.7.3 MultiBoosting

MultiBoosting [95] combines Adaboost.M1 with wagging (a kind of Bagging). It com-
bines Adaboost’s high bias and variance reduction with wagging’s high variance re-
duction. It is based on the observation that most of the performance advantage of an
ensemble is due to the first few members. It forms subcommittees by using an Ad-
aboost algorithm. Different starting datasets for different subcommittees are created
by using the wagging method. To create an ensemble of the size L, u subcommittees
of the size v are created; where uv = L. As the wagging method (a kind of Bag-
ging) creates different datasets, u different datasets are created by using the wagging

2.7. SOME POPULAR ENSEMBLE METHODS 51

method. Then an Adaboost algorithm, for the ensemble size v, runs on each of these
datasets independently. The difference between Adaboost and Multiboost is that in
Adaboost, for the ensemble size L, data weights are initialized (all initial weights are
taken 1/n) once, whereas, in Multiboost, after each v iterations, a new dataset (created
by the wagging method) is used and data weights are initialized (all initial weights
are taken 1/n). In other words, in Multiboost, Adaboost run multiple times, but each

time a different dataset (created by the wagging method) is used. Decisions of all sub-
committees are combined to get the final decision. Using C4.5 as the base learning
algorithm, Multiboosting is demonstrated [95] to produce decision committees with
lower error than either AdaBoost or wagging significantly more often than the reverse
over a large representative cross-section of UCI data sets. Experimental results suggest
that MultiBoost achieves most of the bias reduction of AdaBoost together with most
of the variance reduction of wagging. MultiBoost offers a potential computational ad-
vantage over AdaBoost in that it is amenable to parallel execution. Each subcommittee
may be learned independently of the others.

2.7.4 Random Subspaces

In this method [54], the classifiers of an ensemble are trained on the different sets of
attributes of training data. As different classifiers are trained on the different sets of
attributes, diverse classifiers are created. Ho [54] suggests that this method is more
effective when datasets have large numbers of irrelevant attributes.

2.7.5 Dietterich’s Random Trees

Dietterich [30] proposes a method to grow randomized trees for an ensemble that con-
sists of random trees. This method introduces randomization while splitting the nodes
of decision trees. Instead of selecting the best split, it selects a test among the best K

tests.

2.7.6 Random Forests

Breiman [13] combines Bagging with Random Subspace method to create Random
Forests. To build the tree, it uses a bootstrap replica of the training sample. During the
tree growing phase, at each node the optimal split is derived by searching a random
subset of size K of the candidate attributes. As this method combines two random

52 CHAPTER 2. LITERATURE SURVEY

processes, it is able to produce diverse trees. It compares favourably to Adaboost but
is more robust with respect to the class noise.

2.7.7 Extremely Randomized Trees

Geurts et al. [47] proposed Extremely Randomized Trees (ERT). It consists of random-
izing both attribute and cut-point choice while splitting a tree node. It takes a decision
of cut-point without considering the outputs. At every level, they select K attributes.
It takes decision of cut-points without considering the outputs. These K cut-points are
then evaluated to select the best split. In the extreme case (K=1), it builds totally ran-
domized trees whose structures are independent of the output values of the learning
sample. Every tree is trained on a full dataset. Experiments show, that it performs
similar to or better than other randomization based ensemble methods. Besides ac-
curacy, the other strength of the resulting algorithm is good computational efficiency.
The geometrical analysis has shown that Extra-Trees asymptotically produce continu-
ous, piecewise multi-linear functions. Bias/variance study suggests that randomization
increases bias and variance of individual trees, the part of the variance due to random-
ization can be cancelled out by averaging over a sufficiently large ensemble of trees.

Extreme randomized trees have been used to create coding for image classification
[75]. Experiment results suggest that they provide more accurate results and much
faster training and testing as compared to traditional methods.

2.7.8 The Random Oracle Framework

Kuncheva and Rodriguez [68, 84] propose classifier ensembles with random linear or-
acle. In this method, every classifier in the ensemble is replaced by a pair of classifiers.
These two classifiers learn on different subspaces decided by a random hyperplane.
In the RLO framework, the hyperplane (random linear oracle) is generated by taking
two random points A and B from the training set and calculating the hyperplane per-
pendicular to the line segment between the points A and B, and running through the
middle point (Fig. 2.7). The location of the hyperplane is between these two points
that ensures that there will be at least one point on the either side of the hyperplane.
While testing, first the position of the testing data point is decided and the decision of
the classifier is used that is trained in that subspace.

They also suggest random spherical oracle [84]. In this method, a space is divided

2.7. SOME POPULAR ENSEMBLE METHODS 53

into two regions: inside and outside a hypersphere in a random subspace. The proce-
dure for selecting the sphere is:

• Draw a random feature subset containing at least 50% of the features.

• Select a random training instance as the centre of the sphere.

• Find the radius of the sphere as the median of the distances from the centre to S

randomly selected training instances. (For no specific reason, S = 7 is used)

The selection of a feature subset is used to increase the diversity of the oracles (and
therefore, of the random oracle classifiers). If the distances are always the same for a
pair of objects, two close objects would be in the same subspace for the majority of
random oracles. Authors argue that the effect of using such feature subset in is that the
distance between two objects can be different for different oracles.

Two reasons are suggested for the success of the random oracle approach.

1. As linear oracle splits the space into two subspaces, the classification task is
easier, that may lead to the better classification accuracy (for a pair of classifiers)
than the classifier trained on complete space.

2. The second reason is that with random linear oracle, diverse classifiers are cre-
ated.

Kuncheva and Rodriguez [68, 84] present experiments with decision trees ensem-
bles and naive Bayes ensembles. For decision tree ensembles, the random linear oracle
ensemble method itself is not a very strong method. However, when different ensemble
methods are examined with and without the oracle, the results suggest that all ensem-
ble methods benefited from the new approach, most markedly so random subspaces
and bagging.

They also study with naive Bayes classifiers, their experiments consider two ran-
dom oracles types (linear and spherical). Experiments show that ensembles based
solely upon the spherical oracle (and no other ensemble heuristic) outperform Bag-
ging, Wagging, Random Subspaces, AdaBoost.M1, MultiBoost and Decorate. More-
over, all these ensemble methods are better with any of the two random oracles than
their standard versions without the oracles.

Peterson and Coleman [78] suggest Principal Direction Linear Oracle (PDLO) in
which the hyperplane is learned such that it (the hyperplane) maximizes the separation
of samples between the pair of miniclassifiers. The hyperplane is based on rotations

54 CHAPTER 2. LITERATURE SURVEY

Figure 2.7: XOR classification problem and its solution using a linear oracle and two
linear subclassifiers [68].

of principal components extracted from sets of filtered attributes. The motivation for
PDLO is that if a standardized data set primarily consists of two largely separated
clusters, then by theory the first eigenvector associated with the largest eigenvalue will
form a straight line connecting the centres of the two clusters, since the two clusters
will define the greatest amount of variation in the data.

2.8 Conclusion

Decision trees are very popular classifiers, however, they are not very accurate. Deci-
sion tree ensembles generally produce better results than a single decision tree. Several
ensemble methods have been proposed. The core idea of these methods is to produce
accurate and diverse decision trees. The balance of accuracy and diversity is the key to
success of an ensemble method. In the next chapter, we study various transformation
techniques and their applications in creating classifier ensembles.

Chapter 3

Data Transformation Techniques

In the previous chapter, we studied different classifiers and several ensemble methods.
This chapter discusses various data transformation techniques. Principal component
analysis and random projection techniques and their applications in machine learning
is presented in detail. The discretization process is also introduced is this chapter.
Several popular discretization methods are also presented in this chapter. In the end,
we present the use of different data transformation techniques in creating classifier
ensembles.

3.1 Different Data Transformation Techniques

A pattern is represented by attributes. A data transformation is a process by which rep-
resentation of the pattern is changed by creating new attributes. These new attributes
may be a subset of the original attributes or derived by using the original attributes.
There are different data transformation techniques that are used for different reasons
for example PCA [88, 87] is used to reduce the number of attributes required to rep-
resent the pattern. Random projection [23], discretization [32] etc. are other data
transformation techniques that are quite popular in the pattern recognition field. We
will discuss these techniques in detail.

Kernel machines [93, 17] solve the pattern recognition problems in high dimen-
sional attribute spaces that are derived by using the original attributes. Support vector
machines [93, 17] are successful because they use “kernel-trick” which allows kernel-
ized algorithms to operate in high dimensions without incurring a corresponding cost.
The idea behind this is that if the data is not linearly separable in the original attribute
space, kernel methods may be able to find a linear separator in a high dimensional

55

56 CHAPTER 3. DATA TRANSFORMATION TECHNIQUES

space. In kernel machines, the data transformation is not done explicitly, however, the
similarity between two data points are computed in high dimensional attribute space
that are derived by using the original attributes.

3.2 Principal component analysis (PCA)

PCA is widely used in signal processing, statistics, and image compression [88, 61,
87]. PCA is used to transform a high dimensional data into a low dimensional data with
a small loss of information. It transforms a number of possibly correlated attributes
into a smaller number of uncorrelated attributes called principal components (for an
example see Fig. 3.1). These new attributes are linear combinations of the original
attributes. These new attributes are determined by the eigenvectors of the covariance
matrix. Each eigenvalue indicates the portion of the variance that is correlated with
each eigenvector. Thus, the sum of all the eigenvalues is equal to the sum squared
distance of the points with their mean divided by the number of dimensions. Generally
the first few principal components account for the majority of the observed variation.

Following assumptions are behind PCA when these assumptions are not correct
PCA may perform poorly [88, 87],

1. Linearity - Linearity frames the problem as a change of basis. In other words,
it asssumes that new important attributes are linear combinations of the original
attributes.

2. Large variances have important structure - This assumption suggest that
principal components with larger associated variances represent interesting struc-
ture, while those with lower variances represent noise. This is a strong, and
sometimes, incorrect assumption.

3. The principal components are orthogonal - This assumption provides an in-
tuitive simplification that makes PCA soluble with linear algebra decomposition
techniques.

Kernel principal component analysis [86] is a method for performing a nonlin-
ear form of principal component analysis. It combines the philosphy of PCA with
kernel-trick. In experiments comparing the utility of kernel PCA features for pattern
recognition using a linear classiffier, Schölkopf et al. [86] shows two advantages of
nonlinear kernel PCA: first, nonlinear principal components afforded better recogni-
tion rates than corresponding numbers of linear principal components; and second, the

3.3. RANDOM PROJECTION (RP) 57

Figure 3.1: A two dimensional dataset, the variation for this data is in different direc-
tions (principal components) and not in the natural directions.

performance for nonlinear components can be further improved by using more compo-
nents than possible in the linear case. In linear PCA, one can find at most d (number of
attributes) nonzero eigenvalues, whereas, kernel PCA can find up to n (number of data
points) nonzero eigenvalues. Thus, this is not necessarily a dimensionality reduction.

3.3 Random Projection (RP)

In this section, we discuss random projection and its applications in machine learning.
RP is a technique of mapping a number of points in a high-dimensional space into a
low dimensional space with the property that the Euclidean distance of any two points
is approximately preserved through the projection.

In RP, the original data is projected onto a lower dimensionality subspace using a
random matrix whose columns have unit lengths. Using matrix notation where Dm×n

is the original set of n, m dimensional observations, the projection of the data onto a
lower d-dimensional subspace is defined as

DRP
d×n = Rd×mDm×n (3.1)

where Rd×m is a Random Matrix and DRP
d×n is the new d× n projected matrix.

The entries of the matrix R can be calculated using the algorithm presented in
Fig. 3.2. The main reason for orthogonalizing the random vectors is to preserve the
similarities between the original vectors in the low-dimensional space. However, in

58 CHAPTER 3. DATA TRANSFORMATION TECHNIQUES

Random Matrix R for RP
1. Set each entry of the matrix to an i.i.d. N(0; 1) value.
2. Orthogonalize the d rows of the matrix using the Gram-Schmidt algorithm.
3. Normalize the rows of the matrix to unit length.

Figure 3.2: A method to create Random matrix for RP.

high-dimensional spaces, there exist a much larger number of almost orthogonal vec-
tors than orthogonal vectors. Thus, high-dimensional vectors having random directions
are very likely to be close to orthogonal [51]. Hence, it is possible to save computation
time by avoiding the orthogonalization step without affecting much the quality of the
projection matrix.

Achlioptas [1] show that the Gaussian distribution can be replaced by a much sim-
pler distribution such as

rij = ±√3 with probability 1/6 each or 0 with 2/3 probability. (3.2)

rij = (±1) with probability 1/2. (3.3)

The key idea behind RP is Johnson and Linden Strauss theorem [60, 24] which states
that if points in a vector space are projected onto a randomly selected subspace of
suitably high dimension, then the distances and relative angles between the points are
approximately preserved. To decide the dimension d of the projected data for the
practical applications is an open problem as Fern and Brodley [36] suggest “to our

knowledge it is still an open question how to choose the dimensionality for a random

projection in order to preserve separation among clusters in general clustering algo-

rithms.” However, Dasgupta [22] shows that the data from a mixture of K Gaussians
can be projected into just O(log K) dimensions while retaining the approximate level
of separation between clusters. This projected dimension is independent of the num-
ber of data points and of their original dimension. Dasgupta [22] also concludes that
RPs result in more spherical clusters than those in the original dimension. This is
important because raw high-dimensional data can be expected to form very eccentric
clusters. and he combines RP with the Expectation Maximization (EM) algorithm and
applies it to a hand-written digit dataset, achieving good results. Indyk and Motwani

3.3. RANDOM PROJECTION (RP) 59

[58] apply RP to the nearest neighbor problem. This leads to an approximate algo-
rithm with polynomial preprocessing and query time polynomial in d and log n for a
d-dimensional Euclidean space. Achlioptas et al. [2] suggest RP as a way of speeding
up kernel computations in methods such as kernel PCA.

Franklin and Madigan [38] report a number of experiments to evaluate RP in the
context of inductive supervised learning. They also compare RP and PCA on a num-
ber of different datasets and using different machine learning methods. In these ex-
periments, datasets are projected into lower dimensional datasets and experiments are
carried out to see how different classifiers behave on these low-dimensional datasets.
Dimensions of these new spaces are varied and the performance of different classi-
fiers are studied on these new spaces (created by RP or PCA). It is expected that as
the dimension of the new space is increased, the performance of the classifier on the
new space will approach the performance of classifier on the original space because
as the dimension of the new space is increased, the information loss due to the data
transformation (RP or PCA) is reduced.

They select nearest neighbour (NN) method [8], C4.5 decision trees [80] and linear
SVM [93] for their experiments. They find that nearest neighbor methods are least
affected by reduction in dimensionality through PCA or RP - their performance dete-
riorates less than that of C4.5 or of SVM. Interestingly, in some cases, PCA projection
into a low dimensional space actually improves the performance of nearest neighbour
methods. As compared to SVM and decision trees, NN methods performance, with
RP, approach those in the original space quite rapidly as the dimension of the space,
created by RP, increases. Such behaviour of NN methods is to be expected since they
(NN methods) rely on distance computations for their performance and are not con-
cerned with separation of classes or informativeness of individual attributes. Thus one
might expect that NN methods would stand to benefit most from RP. Both RP and PCA
adversely affect the performance of SVM. While PCA does outperform RP at lower
dimensions, the difference diminishes as the dimensionality of projections increases.
For some datasets, C4.5 does very well with low-dimensional PCA projections, but
its performance deteriorates after that and doesn’t improve. Its performance with RP
is also poor. Authors argue that since decision trees rely on informativeness of indi-
vidual attributes and construct axis-parallel boundaries for their decision, they don’t
always deal well with transformations of the attributes. They suggest that “Random
Projections and decision trees might not be a good combination.”

Hegde et al. [52] claim that for a wide variety of machine-learning algorithms, the

60 CHAPTER 3. DATA TRANSFORMATION TECHNIQUES

performance of these algorithms when given access to only a randomly projected ver-
sion of a dataset is essentially the same as its performance on the original dataset. This
suggests that with only a low-dimensional, easily obtainable representation, these ma-
chine learning algorithms can achieve similar performance as with the high-dimensional
dataset. In other words, random projections can be used as a universal, inexpensive pre-
processing step to many machine learning tasks. However, it is not precisely clear how
the presence of data noise affects the learning performance in the compressed domain.

Random projections have been useful for creating cluster ensembles [36, 91, 7].
In this method a dataset is projected into new data space by using random projections
and a cluster algorithm is used on this new data. Various random projections give
diverse datasets, hence different clustering results are obtained by using these datasets.
These results are combined to get the final result. Empirical results [36, 7] suggest that
these cluster ensembles achieve better and robust results as compared to single runs of
clustering algorithms.

3.4 Discretization

Discretization [32] is a process that divides continuous numeric values into a set of
intervals that can be considered as categorical values. Discretization is used for two
main reasons:

1. Accuracy - Many classification algorithms work well for nominal data, whereas
the data at hand might be purely continuous. The discretization process may im-
prove the accuracy of classification algorithms. For example, the naive Bayes
classifier requires the computation of the conditional probabilities of the classes
given the example. For the categorical attributes this can be computed with
frequencies obtained from the training data. For the continuous attributes, an
assumption about the data distribution is needed. Generally, the normal distri-
bution is assumed. When this assumption is not true, the naive Bayes classifier
performs poorly. Dougherty et al. [32] show that the performance of naive Bayes
algorithm significantly improves when the continuous attributes are discretized
using the entropy-based methods. Yans and Webb [97] also present those simi-
lar findings; that the discretization process is helpful for naive Bayes classifiers.
Dougherty et al. [32] also show that in some cases, the performance of the
C4.5 decision tree induction algorithm significantly improves with discretized
attributes.

3.4. DISCRETIZATION 61

Figure 3.3: Summary of Discretization Methods [32].

2. Computational Complexity - The discretization process improves the speed
of the tree induction process. At each node, to split the node, all available split
points are considered to get the best split point. If possible split points are few,
the computation time to decide the best split point will be small. The discretiza-
tion process is used to reduce the number of possible spilt points. The use of
histograms, to approximate the split at a node, has been proposed to reduce the
time to create a decision tree using a very large dataset [20]. For each attribute,
instead of sorting the instances at a node, a histogram is created, and bin bound-
aries are used as potential splits. Since no sorting is done and fewer potential
split points are evaluated, it takes less time to create a tree using histograms. The
proposed tree may have less accuracy as split points have been approximated.

3.4.1 Discretization Methods

Dougherty et al. [32] define three axes upon which discretization methods can be
classified; global vs. local, supervised vs. unsupervised and static vs. dynamic. Super-
vised methods use the information of class labels whereas, unsupervised methods do
not. Local methods as the one used in C4.5, produce partitions that are applied to local-
ized regions of the instance space. Global methods are applied to the entire dataset. In
static methods attributes are discretized independently of each other, whereas, dynamic
methods take into account the interdependencies between them. Equal width intervals,
equal frequency intervals and unsupervised monothetic contrast criteria (MCC) [26]
are unsupervised methods. Whereas, discretization methods based on entropy (su-
pervised MCC [26], entropy minimization discretization [34], D-2 [20]), 1DR [55],
adaptive quantizers [21] and Vector Quantization [65] etc. are supervised methods.

62 CHAPTER 3. DATA TRANSFORMATION TECHNIQUES

Data Point Attribute A Class
A 1 +
B 2 +
C 3 -
D 4 -
E 5 -
F 6 -
G 7 -
H 8 -
I 9 +
J 10 +
K 11 +
L 12 +
M 13 +
N 14 +
O 15 -
P 16 -

Table 3.1: A continuous dataset. We present discretization of this dataset by different
methods.

Equal width intervals and equal frequency intervals are global methods. Whereas, the
discretization used in C4.5 decision tree growing phase and Vector Quantization are
local methods. All these methods are static methods. Fig. 3.3 shows the detailed
classification of different discretization methods.

Dynamic methods are a promising area of research. As these methods are able
to capture interdependencies between attributes, it may improve the accuracy of de-
cision rules [69]. Kwedlo and Kretowski [69] show that static methods (that do not
capture interdependencies) run the risk of missing information necessary for correct
classification. Following are some popular discretization methods,

1. Equal Width Discretization (EWD) - Equal Width Discretization (EWD) is
a simple and popular discretization algorithm. EWD [32] divides the feature
values into equal sized bins. Hence, for K bins, the bin boundaries are xmin

+ w, xmin + 2w,..., xmin + (K-1)w, where w = (xmax - xmin)/K. This is a an
unsupervised method, which does not take into account the information of class
labels. In the given example (table 3.1), there are 16 points. In order to create 4
bins, different boundaries are created by the equal width method. The width of
the bin is (16 - 1)/4 = 3.75. Hence, bin boundaries are 1, 1 + 3.75, 1 + 2×3.75
and 1 + 3×3.75. By using these boundaries, four bins will be (A, B, C, D), (E,

3.4. DISCRETIZATION 63

F, G, H), (I, J, K, L) and (M, N, O, P).

2. Equal Frequency Discretization (EFD) - EFD [32] divides the sorted values
into K bins so that each bin contains approximately the same number of training
instances. In other words, each bin contains n/K (possibly duplicated) adjacent
values. As there are 16 data points in the given example (table 3.1), for 4 bins,
each bin will have 16/4 = 4 points, hence, four bins will be (A, B, C, D), (E, F,
G, H), (I, J, K, L) and (M, N, O, P).

3. Entropy Minimization Discretization - Fayyad and Irani [34] use recursive en-
tropy minimization for discretization. For evaluating each candidate bin bound-
ary, the attribute is discretized into two bins and the resulting class information
entropy (Eq. 2.3) is calculated. A binary discretization is determined by select-
ing the bin boundary for which the entropy is minimal amongst all candidates.
This method then is applied to both the bins recursively until some stopping cri-
terion is achieved. A minimum description length criterion (MDL) is applied to
decide when to stop the recursive process. It is a supervised method as it uses
class labels to compute the entropy of different partitions. First the data, given
in the example (table 3.1) , is divided into two bins such that these two bins have
minimum entropy, hence, the first split will be between H and I points. The new
two bins will be further divided, the first bin will be divided between B and C
points and the second bin will be divided between N and O points to have mini-
mum entropy. Hence, four bins are (A, B), (C, D, E, F, G, H), (I, J, K, L, M, N)
and (O, P).

4. Error-based Discretization - Maass [71] proposes an algorithm to discretize a
continuous feature with respect to error on the training set. This algorithm dis-
cretizes a continuous feature by producing an optimal set of K or fewer intervals
that results in the minimum training error if the instances were to be classified
using only that single feature after discretization. We will have four bins for the
example (table 3.1). Four bins are (A, B), (C, D, E, F, G, H), (I, J, K, L, M, N)
and (O, P), as with these bins we have zero training error.

5. 1R discretizer - Holte [55] proposes a one-level decision tree (also called a de-
cision stump). This is used to create disctetization. In this method, the observed
values of a continuous feature is sorted and divided into different bins such that
each bin contains only the instance of a particular class. As, this procedure can

64 CHAPTER 3. DATA TRANSFORMATION TECHNIQUES

lead to the same number of bins as the number of data points; only one data
point in each bin, this algorithm is constrained to have minimum number of data
points in each bin (except the rightmost bin). For the data given in the example
(table 3.1) all adjacent points with same class will be combined. Hence, four
bins (A, B), (C, D, E, F, G, H), (I, J, K, L, M, N) and (O, P) are created.

6. D-2 Discretizer - Catlett [20] explores the use of discretization to improve the
speed of decision tree algorithm for datasets with large number of continuous at-
tributes. They use an entropy-based method for discretization. This method uses
several criteria to stop the recursive partitioning of each attribute: the maximum
number of bins, the minimum number of data points in each bin, the minimum
information gain.

7. Monothetic Contrast Criteria (MCC) - Van de Merckt [26] proposes two
methods under the general heading of Monothetic Contrast Criteria (MCC). The
first criterion, makes use of an unsupervised clustering algorithm that seeks to
find the partition boundaries that “produce the greatest contrast” according to a
given contrast function. An unsupervised monothetic contrast criterion is defined
in following way,

Contrast(N1; N2; A) =
N1N2

N1 + N2

(mA1 −mA2)
2 (3.4)

where N1 and N2 are number of instances of the resulting binary split, mA1 is
the mean value for attribute A of N1 instances and mA2 is the mean value for
attribute A of N1 instances.

In the given example (table 3.1) the best contrast will be between H and I points.
The second method, that combine supervised and unsupervised methods rede-
fines the objective function to be maximized by dividing the previous contrast
function by the entropy of a proposed partition.

3.4.2 Effect of the Discretization Process on Different Classifiers

Dougherty et al. [32] study the effect of different discretization methods (as a pre-
possessing process) on naive Bayes classifiers and C4.5 decision trees. All the dis-
cretization methods improve the naive Bayes classifier. However, this improvement is

3.5. DATA TRANSFORMATION IN CLASSIFIER ENSEMBLES 65

more for entropy-based discretization methods. As discussed earlier, for continuous
attributes, a naive Bayes classifier assumes Gaussian distribution which is not valid
for many domains. A discretization process helps overcome the normality assumption,
hence, improves the performance of naive Bayes classifiers.

The study with C4.5 decision trees suggests that the discretization process has not
much effect on C4.5 classifiers. Authors suggest that no degradation in the perfor-
mance with the global entropy-based discretization process indicates that the C4.5 al-
gorithm is not taking full advantage of local discretization methods for the datasets
tested.

Kohavi and Sahami [64] compare an error-based discretization method [71] with
an entropy-based discretization method (with minimum description length heuristic)
[34] for naive Bayes classifiers and C4.5 decision trees. Results suggest that the
entropy-based discretization method generally outperforms the error-based discretiza-
tion method. Authors carried out analysis with simulated data to understand this be-
haviour. They showed that error-based discretization methods have inherent limita-
tion which allows a less number of partitions whereas there is no such limitation for
entropy-based methods and can partition the space as long as the class distribution be-
tween the different partitions is different. Their analysis suggest that the entropy-based
discretization method might perform better because of the feature interaction; as long
as the distribution is different, a threshold will be formed, allowing other features to
make final discrimination. In other words, the error-based discretization method is
inappropriate in cases where features interact.

3.5 Data Transformation in Classifier Ensembles

Random subspaces [54] (RS) is a popular ensemble method in which each classifier
is trained on a random subset of the attributes. In other words, for every classifier a
pattern is represented by a subset of original attributes. For the dataset with a small
number of attributes, Ho [54] suggests that new attributes may be created by taking the
random linear combinations of the attributes and the RS technique can be applied on
the dataset that is the combination of original attributes and the new attributes. In Ro-
tational Forests [83], new attributes are created by using PCA technique. In one of the
variants of Random Forests [13], Breiman defines new attributes by taking the random
linear combinations of the attributes. Kamath et al. [62] introduces randomization by
discretizing continuous attributes. This method uses histograms to determine the split

66 CHAPTER 3. DATA TRANSFORMATION TECHNIQUES

Ensemble Method Data transformation method Classifier
Random Subspace [54] A subset of attributes Decision trees
Random Forests [13] A subset of attributes at nodes Decision trees

Rotational Forests [83] PCA Decision Trees
Kamath et al. [62] Discretization at nodes Decision trees

Schclar and Rokach [85] Random Projection KNN

Table 3.2: Different ensemble methods that use data transformation.

at each node of a decision tree. It evaluates the score only at the bin boundaries, af-
ter selecting the best bin boundary, it selects the split point randomly in some interval
around the best interval boundary. This way diverse decision trees are created. Cai and
Wu [18] propose the use of the discretization process to create ensembles of support
vector machines. This algorithm uses the rough sets and boolean reasoning approach to
construct diverse classifiers. Schclar and Rokach [85] introduce an ensemble method
by using random projections. In this method, new datasets are created by using random
projections. Classifiers learn on these new diverse datasets are diverse, hence diverse
classifiers are created. Authors use nearest-neighbour classifier as the base classifier
to show that this method outperform the Bagging algorithm. However, no comparison
with more complex ensemble methods like AdaBoost.M1 is presented. The summary
of these methods are provided in table 3.2.

Generally in most of the ensemble methods a subset of features is used, hence,
it would be interesting to study those ensemble methods that use extended feature
spaces. Discretization has been used for ensemble methods, however, there has been
no research for using global discretization methods for ensemble methods.

3.6 Conclusion

Several data transformation techniques were presented in this chapter. Principal com-
ponent analysis, random projection and discretization techniques and their applications
in machine learning were discussed in detail. One can conclude from the present re-
search trend that RP is very active research area as it is quite useful in transforming
high-dimensional space into low dimensional space. RP can also be useful for creating
ensembles as it creates different representations of same problem that can be used to
create diverse classifiers.

Chapter 4

A Study of Random Linear Oracle
Framework and Its Extensions

In the previous chapter, we studied about random projections. In this chapter, first we
present a method that uses random projections and a univariate decision tree algorithm
to create ensembles of linear multivariate decision trees. In the second part of this
chapter, we study the random linear oracle (RLO) framework [68, 84]. We propose two
new variants of the random linear oracle approach (Learned-RLO and Multi-RLE) that
extend the philosophy of the RLO approach. We then show that the method proposed
to create ensembles of linear multivariate decision trees is the generalization of the
RLO framework.

4.1 Diverse Linear Multivariate Decision Trees

As discussed in Chapter 2, linear multivariate decision trees have better representa-
tional powers as compared to univariate decision trees, however, they are more com-
putationally expensive. Linear multivariate decision trees can have decisions at each
node on the basis of linear combinations of attributes. Generally, the possible linear
combination of attributes is learnt at each node [59, 16, 49, 44] this makes the learn-
ing process computationally expensive. The other possible method could be that we
generate new attributes that are linear combinations of the original attributes, then we
can use these attributes with univariate decision tree algorithms. The final decision
trees will be multivariate decision trees in the original attribute space. As discussed in
Chapter 2, there are two popular methods: (PCA and random projections) that create
good linear combinations of attributes (both create small number of linear attributes

67

68CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

with minimal loss of information). We propose a method to create ensembles of linear
multivariate decision trees that uses random projections. In the present method, we use
RP for the following reasons;

1. Datasets created by using random projections create linear multivariate de-
cision trees - RP project the original data to a new attribute space. These at-
tributes are linear combinations of the original attributes. We concatenate these

new attributes with the original attributes. As discussed in Chapter, 2 RP has
been used for classifier ensembles [85] and cluster ensembles [36, 91, 7]. No

one has used the extended space as proposed by us for ensembles. If we induce
a univariate decision tree on this concatenated data, we get a linear multivariate
tree in the original attribute space. The main difference between this approach
of creating oblique decision trees and other approaches discussed in Chapter
2, is that in this approach, the orientations of non-orthogonal hyperplanes are
fixed (that depend on new attributes), only the locations of these hyperplanes
are learned during the tree growing phase whereas in the other approaches both
the locations and the orientations of the non-orthogonal hyperplanes are com-
puted during the tree growing phase. Experiments suggest that C4.5 trees do
not perform well with random projections [38]. One of the possible reasons for
this is that the orientations of the hyperplanes are fixed that so limiting the repre-
sentational power of decision trees. Fradkin and Madigan [38] suggest “Random
Projections and decision trees are perhaps not a good combination”. However, in
the present approach, we concatenate new attributes with the original attributes,
finding the technique extremely profitable.

2. Different random projections create different datasets, hence we get diverse
decision trees after learning on these datasets - To build a classifier ensemble,
we need diverse decision trees. RP helps in creating these diverse decision trees.
Different random projections of a dataset create different new datasets (a dataset
is created by concatenating new attributes with the original attributes). If we
train univariate decision trees on these new datasets, we get diverse decision
trees that are linear multivariate decision trees in the original attribute space. We
can combine these trees to get an ensemble of linear multivariate decision trees.

In summary, each tree of the ensemble has decision surfaces defined by the original
attributes and the linear combinations of original attributes (created using RP) and each

4.1. DIVERSE LINEAR MULTIVARIATE DECISION TREES 69

Input- Original dataset T with m continuous attributes and k classes.
M the size of the ensemble.
Training Phase
for i=1...M do

Data Generation
a - Use random projection matrix (Ri) to create d dimensional dataset Ri.
b - Combine T and Ri datasets to get m + d dimensional dataset Ti.
Learning Phase
Treating dataset Ti as continuous, learn decision tree Di on it.

end for
Classification Phase
For a given data point x
for i=1...M do

a - Convert x into m + d dimensional data point xi using the original attribute and
random projection matrix (Ri).
b - Find the decision of Di.

end for
Combine the decisions of all the selected classifiers by the chosen combination rule
(we use majority voting scheme).

Figure 4.1: Algorithm for ensembles of linear multivariate decision trees.

tree has different decision surfaces (RP creates different attributes), hence these trees
may produce good ensembles. The method is presented in Fig. 4.1.

Creating new attributes and augmenting with original attributes has been suggested
by Balcan and Blum [5]. However, their proposal is only for a single classifier whereas
our proposed method creates classifier ensembles. Balcan and Blum [5] use similarity
functions to create new attributes, whereas we use random projections to create new
attributes.

Maudes et al. [73] propose an ensemble method that builds some new features to
be added to the training dataset of the base classifier. Those new features are com-
puted by using a Nearest Neighbor (NN) classifier built from a few randomly selected
instances. An experimental study by Maudes et al. [73] with decision tree as the base
classifier suggests that for traditional ensemble methods, the ensemble accuracy and
the base classifiers diversity are usually improved. In our proposed method, we are
using random projections to create new attributes that are linear combinations of the
original attributes whereas there is no such property of the new attributes created by
the method proposed by Maudes et al. [73], hence we expect that our proposed method
has better representational power.

70CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

In the next part of this chapter, we will show that the method proposed in this
section is the generalization of the RLO framework [68] for decision trees ensembles.

4.2 Random Linear Oracle Ensembles

Kuncheva and Rodriguez [68, 84] propose classifier ensembles with Random Linear
Oracle (RLO). As discussed in Chapter 2, in this method, every classifier in the ensem-
ble is replaced by a pair of classifiers. These two classifiers learn on different subspaces
decided by a random hyperplane. While testing, first the position of the testing data
point with respect to the random hyperplane is decided and the decision of classifier,
trained in that subspace, is evaluated.

As discussed in Chapter 2, having the decision tree as the base classifier, RLO
ensemble members can be defined as “omnivariate decision trees” (linear multivariate
decision trees) [98], where there is a random hyperplane at the root node followed
by two standard univariate decision trees. One of the reasons for the success of RLO
ensembles is that RLO trees are quite diverse as different RLOs at the root node of
different trees create diversity.

As discussed in chapter 2, in the RLO framework, the hyperplane is generated by
taking two random points A and B from the training set and calculating the hyperplane
perpendicular to the line segment between the points A and B and running through the
middle point (Fig. 4.2). The location of the hyperplane is between these two points
that ensures that there will be at least one point on the either side of the hyperplane.

Another interpretation of this approach is, that by this method every training data
point is projected on the line segment between the points A and B, a split point that is
the middle point of the position of the data point A and the position of the data point
B on this dimension is selected to split the training data into two new datasets. The

philosophy of the RLO framework can be seen as projecting the data onto a randomly

selected attribute that is a linear combination of original attributes and selecting a split

point on this attribute such that there is at least one point on either side of this split

point (Fig. 4.3). To decide the new random attribute, we may use the rich literature of
random projections [37, 22] that are generally used to create a low dimensional data
from a high dimensional data such that the loss of the information is minimal.

Following the philosophy of the RLO framework, the dataset can be divided into
two subsets using the random projection technique (we will call this the RLO′ frame-
work). The data is randomly projected onto a one dimensional space (ρ1) and the data

4.2. RANDOM LINEAR ORACLE ENSEMBLES 71

Figure 4.2: The RLO (hyperplane) is generated by taking two random points A and B
from the training set and calculating the heperplane perpendicular to the line segment
between the points and running through the middle point.

is split into two subsets using a random split point s such that

ρ1 =
m∑

i=1

wixi ≤ s. (4.1)

where xi are the numeric attributes, wi are the corresponding real valued coeffi-
cients and ρ1(min) < s < ρ1(max).

RLO′ ensemble members created using the proposed method can also be defined as
linear multivariate decision trees [98], where there is a random hyperplane defined as
Eq. 4.1 at the root node followed by two standard univariate decision trees (Fig. 4.7).
The RLO algorithm for the Bagging ensemble method in the original form is presented
in Fig. 4.5. The RLO′ algorithm for the Bagging ensemble method by using RP (as
proposed in this section) is presented in Fig. 4.6. An empirical evaluation will follow
in section 4.5.

In RLO′ ensembles, random hyperplanes are created such that the orientations and
the locations of these hyper planes are random, that may adversely affect the accuracy
of individual classifiers of the ensembles. In the next section, we propose a new variant
of RLO′ ensembles, Learned-RLO (LRLO) ensembles, in which the locations of the
hyperplanes are decided using the selected split criterion.

72CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

Figure 4.3: Project all data points on a random direction and spit the data by selecting
the random point C.

4.3 Learned-Random Linear Oracle

In RLO′ ensembles, the random hyperplanes are created such that the orientations
and the locations of these hyperplanes are random. We may extend this approach by
developing Learned-RLO (LRLO) in which the orientations of these hyperplanes are
random, however, the locations of these hyperplanes are decided using the selected
split criterion. The advantage of this approach is that it may improve the accuracy of
decision trees as we have eliminated one of the random elements of a RLO′ tree (their
locations; in RLO′ random hyperplanes are placed randomly). One may argue that by
eliminating one of the random elements of RLO trees, the diversity of the RLO ensem-
ble is reduced that is created by this random element (the locations of hyperplanes)
and that may adversely effect the final accuracy of the ensembles. In Learned-RLO,
the orientation of the hyperplane is random for each LRLO tree. In other words, ev-
ery LRLO tree has different hyperplane that is the source of the diversity in LRLO
ensembles. Hence, the new step may improve the overall performance of ensembles.

In the LRLO approach, the data is randomly projected in one dimension ρ1 and any
selected splitting criterion is used to split the data (in the RLO′ approach, the data is
split randomly),

4.3. LEARNED-RANDOM LINEAR ORACLE 73

Figure 4.4: A RLO′ omnivariate decision tree with a random hyperplane at the root
node.

ρ1 =
m∑

i=1

wixi ≤ l (4.2)

where l is decided by the selected splitting criterion.

Then two univariate decision trees are trained on two data subsets created using this
split. LRLO ensemble members can be defined as linear multivariate decision trees,
there is a decision stump (a decision stump is a single level decision tree created by
using a single attribute) at the root node that takes the decision on rp1 (defined as Eq.
4.2) attribute followed by two univariate decision trees (Fig. 4.4).

We propose a variant of the LRLO approach that instead of creating random projec-
tion in one dimension, the data is randomly projected onto more than one dimensional
space and the best split point is selected from the new attributes. In other words, if the
data is randomly projected on d dimensions, a decision stump is learnt on this d dimen-
sional data. As the decision stump take the decision on the basis of a single attribute,
the best attribute of these new d attributes is selected by the decision stump. As there
are more options to select from, it may further improve the accuracy of decision trees.
The LRLO algorithm for the bagging ensemble method is presented in Fig. 4.8.

This variant of LRLO is similar to the Principal Direction Linear Oracle (PDLO)

74CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

Random Linear Oracle Algorithm
Initialisation- Choose the ensemble size M, the base classifier model D and classi-
fication problem P defined as a labelled training set T with m attributes.

Ensemble Construction-
for i=1...M do

a- Create a dataset Ti from the training dataset T using Bagging process.
b- Draw a random hyperplane hi in the feature space of Ti.

d- Split the training set Ti into T+
i and T−

i depending on the which side of hi the
points lie.

e- Train a classifier for each side, D+
i = D(T+

i) and D−
i = D(T−

i). Add the mini-
ensemble of the two classifiers and the split point, (st,D+

i ,D−
i), to the current

ensemble.
end for

Classification
For a new object x,
for i=1...M do

For a new object x, find the decision of each ensemble member by choosing D+
i

and D−
i depending on which side of hi, x is. Combine the decisions of all the se-

lected classifiers by the chosen combination rule (we use majority voting scheme).
end for

Figure 4.5: The original Random Linear Oracle (RLO) algorithm [68]. The highlighted
portion of the algorithm is modified in the proposed RLO′ and LRLO.

[78] approach (discussed in Chapter 2) in a sense that both learn the best hyperplane
from the different choices. However, principal direction linear oracle (PDLO) [78]
uses PCA and whereas in LRLO, we use random projections.

4.4 Multi-Random Linear Ensembles

In the RLO′ framework, a random hyperplane is placed at the root node of a RLO′ tree,
whereas in a LRLO tree a decision stump trained on the new attribute (created by using
the random projection method) is placed at the root node of a LRLO tree. In both cases
the original attributes are not examined to select the split point at the root node.

In a normal decision tree growing phase, at each level of the decision tree, a split
point is decided by the selected split criterion. In other words, at each level all the avail-
able attributes are examined and the best attribute is selected (decided by the splitting

4.4. MULTI-RANDOM LINEAR ENSEMBLES 75

Random Linear Oracle Algorithm by using RP
Initialisation- Choose the ensemble size M, the base classifier model D and classi-
fication problem P defined as a labelled training set T with m attributes.

Ensemble Construction-
for i=1...M do

a- Create a dataset Ti from the training dataset T using Bagging process.
b- Create random projection ρi of the data Ti on 1 dimensions by using matrix Ri.
c-Select a split point St on ρi attribute randomly.
d- Split the training set Ti into T+

i and T−
i depending on the value of attribute ρi

<= si or > si.
e- Train a classifier for each side, D+

i = D(T+
i) and D−

i = D(T−
i). Add the mini-

ensemble of the two classifiers and the split point, (st,D+
i ,D−

i), to the current
ensemble.

end for

Classification
For a new object x,
for i=1...M do

a- Use Ri matrix to create new d attributes.
b- Find the decision of each ensemble member by choosing D+

i or D−
i depending

on the value of ρi attribute, <= si or > si.
end for
Combine the decisions of all the selected classifiers by the chosen combination rule
(we use majority voting scheme).

Figure 4.6: Random Linear Oracle (RLO) algorithm by using RP. The highlighted
portion of the algorithm is different from the original RLO. We define this algorithm
as RLO′.

criterion). Hence, at the root node the best split point is selected from all the attributes.
Whereas, RLO′ trees and LRLO trees do not consider the original attributes at the root
node. The new attribute (the random projection of the data to one dimensional space)
may not be very significant; even then the split point at the root node is decided by this
attribute. This may adversely affect the classification accuracy of the decision tree. To
overcome this problem, we propose the Multi-RLE framework that has a similar tree
growing phase as a univariate decision tree.

In the Multi-RLE framework, the new attribute (created using random projection
of the data) is combined with the original attributes. Hence, if the number of attributes
are m, each data point is represented by m + 1 attributes. A decision tree is trained

76CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

Figure 4.7: A LRLO ominivariate decision tree with a decision stump at the root node.

on this new data, now the new attribute can be selected anywhere in the tree and there
is no guarantee that it is selected at the root node of the tree as in a RLO′ tree or a
LRLO tree. It may help in improving the classification accuracy of Multi-RLE trees as
the new attribute created using RP may not be good for classification. Its selection at
the root node may badly affect the accuracy of a RLO′ or a LRLO tree. However, by
making the new attributes a part of the data, we do not get very diverse decision trees.

This can be explained by the fact that the diversity is created by the new attribute.
If the new attribute is not very significant, it will be selected at the lower level of the
decision tree, and two decision trees which are not similar only at lower levels will
not be as diverse as decision trees which are not similar at higher levels (as in RLO′

and LRLO trees, the root nodes are different). Decision trees are very unstable, a
small change, in one node, can bring a large change in the structure of decision trees.
Therefore, different RLO′ and LRLO trees may have different tree structures.

In the Multi-RLE framework the data is not divided into two subsets, in other words
a single tree is trained whereas, in the RLO′ framework and in the LRLO framework a
pair of trees is trained.

In one of the variants of Multi-RLE ensembles, instead of creating a random pro-
jection on one dimension, the random projection of the data is created on more than one

4.4. MULTI-RANDOM LINEAR ENSEMBLES 77

Learned-Random Linear Oracle Algorithm
Initialisation- Choose the ensemble size M, the base classifier model D and classi-
fication problem P defined as a labelled training set T with m attributes.

Ensemble Construction-
for i=1...M do

a- Create a dataset Ti from the training dataset T using Bagging process.
b- Create random projection Ti(d) of the data Ti on d dimensions by using random
projection matrix Ri

c- Learn a decision stump on this d dimensional data Ti(d), and save split point St

of the selected S attribute (as the decision stump decides on one attribute out of d
attributes).
d- Split the training set Ti into T+

i and T−
i depending on the value of S attribute

<= lt or > lt.
e- Train a classifier for each side, D+

i = D(T+
i) and D−

i = D(T−
i). Add the mini-

ensemble of the two classifiers and the split point, (lt,D+
i ,D−

i), to the current
ensemble.

end for

Classification
For a new object x,
for i=1...M do

a- Use Ri matrix to create new d attributes.
b- Find the decision of each ensemble member by choosing D+

i or D−
i depending

on the value of S attribute, <= lt or > lt.
end for
Combine the decisions of all the selected classifiers by the chosen combination rule
(we use majority voting scheme).

Figure 4.8: Learned-Random Linear Oracle (LRLO) algorithm. The highlighted por-
tion of the algorithm is different from the original RLO.

78CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

dimension (d attributes) and these d attributes are added to the original m attributes.
Better accuracy of individual classifiers may be one of the advantages of this approach,
the other important advantage of this approach is better diversity. As we are creating d

attributes, there is more probability (as compared to when a random projection creates
one attribute) that some of these d attributes may be good for the classification and
may be selected at higher levels, hence decision trees will be diverse. We will like to
emphasise that in this process the diversity is created by creating new attributes and the
tree growing phase is not changed (no randomization is introduced during tree growing
phase) that ensures the good classification accuracy of decision trees. The Multi-RLE
algorithm for the bagging method is presented in Fig. 4.9.

The second version of the Multi-RLE is identical to the method to create ensembles

of linear multivariate decision trees suggested in the first part of this chapter. This
shows the relationship between the method presented in first part of the chapter and the
RLO framework. These two algorithms have different motivations; the first algorithm
(Fig. 4.1) was developed to increase the representational power of ensembles whereas
the second algorithm (Fig. 4.9) has its root in the RLO philosophy which improves
the diversity of trees. This shows that one may study RLO ensembles by using the
representational power framework.

If that data is projected onto more than one dimensional space, a Multi-RLE tree
can use all the new attributes, whereas a RLO′ tree and a Multi-RLE tree can use
only one attribute. This suggests that a Multi-RLE tree has more expressive powers as
compared to a RLO′ tree and a LRLO tree.

We summarize these three approaches in Table 4.1 and Fig. 4.10. In a decision
tree rules are combinations of attributes. Creating a best decision tree is a NP-hard
problem [57]. As discussed in Chapter 2 a decision tree is created by using a greedy
heuristic in which the best attribute is selected at each node. There is no guarantee
that this will give the best tree, however, this method gives good results. Following the
philosophy of this heuristic, we can conclude on the basis of random elements in the
tree growing phase that RLO′ trees are least accurate and Multi-RLE trees are most
accurate. However, good ensembles consists of diverse and accurate decision trees, in
the next section, we present experimental results.

4.5 Experiments

We carried out two kinds of experiments;

4.5. EXPERIMENTS 79

Multi-RLE Algorithm
Initialisation- Choose the ensemble size M , the base classifier model D and classi-
fication problem P defined as a labelled training set T with m attributes.

Training Phase
for i=1...M do

Data Generation
a- Create a dataset Ti from the training dataset T using Bagging process.
a-Create random projection Ti(d) of the data on d dimensions by using matrix Ri.
b-Combine T and Ti(d) datasets to get m + d dimensional dataset.
Learning Phase
Learn Di decision tree on it.

end for

Classification Phase
For a given data point x
for i=1...M do

a- Convert x into m + d dimensional data point Xi using original data and matrix
Ri.
b- Get the prediction for Xi by the decision tree Di.

end for
Combine the results of M decision trees to get the final classification result.

Figure 4.9: Multi-Random Linear Ensembles (Multi-RLE) algorithm. d new attributes
are created and concatenated with the original features.

Method Number of possibilities to be Number of attributes to be
considered at the root node considered at other nodes

RLO
(

n
2

)
m(+)

RLO′ d (-) m (+)
LRLO d (+) m (+)

Multi-RLE (m + d) (+) (m + d) (+)

Table 4.1: Comparative chart of RLO, RLO′, LRLO and Multi-RLE on the basis of
number of possibilities to be considered at the root node and other nodes. ‘-’ means
split points are created randomly and ‘+’ means split points are created by using the
selected split criteria. m is the number of the original attributes, d is the number of
new attributes created by RP and n is the number of data points in the training data.

80CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

(a) RLO

(b) LRLO

(c) Multi-RLE

Figure 4.10: RLO′, LRLO and Multi-RLE trees. A dotted line represents random
hyperplane, a solid line represents a decision stump trained on new features created
using random projections.

4.5. EXPERIMENTS 81

• To study how the ensembles of linear multivariate decision trees perform, we car-
ried out comparative study of the proposed ensemble methods against Bagging,
Adaboost.M1 and RF.

• Different popular ensemble methods are benefited from the RLO framework,
most markedly so Random Subspace and Bagging[68]. Hence, In the second
part of experiments, we study the how Bagging is affected by RLO, LRLO and
Multi-RLE methods.

We carried out experiments with unpruned J48 (Weka implementation of C4.5) de-
cision trees. The size of the ensembles was 50 for these experiments. For RLO′

ensembles and LRLO ensembles, 50 pairs of classifiers are trained. We used Bag-
ging, AdaBoost.M1 with J48 decision trees (with unpruned option) implementation of
Weka. We also carried out the experiments with Random Forests implementation) of
Weka. Apart from the size of the ensemble (which was 50) default settings were used
for these modules.

As discussed in Chapter 3, the elements rij of Random Matrix R are often Gaussian
distributed. We used the following matrix as suggested by Achlipotas [1] for RP in our
experiments as it has benefit of being easy to implement and compute.

rij =±√3 with probability 1/6 each or 0 with 2/3 probability. (4.3)

The experiments were conducted following 5 × 2 cross-validation [28]. The orig-
inal t test proposed by Dietterich [28] to compare the performance of classifiers suffers
from low power and low replicability. Alpaydin [4] propose a modification called
5 × 2 cross-validation F test. We used this test for our experiments. The test has
following steps,

q
(j)
i is the difference between the error rates of the two classifiers on fold j = 1, 2 of

replication i = 1, 2, 3, 4, 5. The average of the replica i is q̄i = (q
(1)
i +q

(2)
i)

2
, the estimated

variance is ν2
i = (q

(1)
i − q̄i)

2 + (q
(2)
i − q̄i)

2 and f is defined as

f =

5∑
i=1

2∑
j=1

(q
(j)
i)2

5∑
i=1

ν2
i

, (4.4)

82CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

the value of f is approximately F distributed with 10 and 5 degrees of freedom. We
considered a confidence level of 95% for this test.

We projected the data onto one-dimensional space, five-dimensional and ten-dimensional
spaces. For linear multivariate decision trees, these new attributes were added to the
original attributes. When the dataset was projected onto one-dimensional space, for
a LRLO tree, a decision stump was trained on that new attribute, whereas a random
split point was used for RLO′ for that new attribute. When the dataset was projected
on more than one-dimensional space, for a MLO tree, a decision stump was learnt on
new attributes and the best split point was selected. For the proper comparative study,
the attribute that was selected for the split (by the decision stump) in a LRLO tree was
used with the random split point for a RLO′ tree.

4.6 Results

Table 4.2 shows the classification accuracy for Bagging RLO, LRLO, and Multi-RLE
methods for different datasets. We summarize our results in following points;

4.6.1 Ensembles of Linear Multivariate Decision Trees

1. Except for the Two-Norm dataset, the average accuracy of linear multivariate
decision trees are similar to J48 decision trees (univariate decision trees). As
discussed earlier that the attributes created by random projection are not good
attributes for a decision trees [38] and decision trees are using predominantly
the original attributes. Therefore, results are similar to J48 decision trees.

2. For ensembles of linear multivariate decision trees, there is a steady increase
in the classification accuracy with the increase in the number of new attributes.
A Multi-RLE tree can use all the new attributes and these attributes can be the
part of the tree at any level. This ensures a more accurate decision tree in some
cases. At the same time when we have a large number of new attributes, there
is a greater probability that some of these attributes are selected at higher levels
of the tree. This helps in getting diverse decision trees. Results suggest that the
contribution of this second point is more in the performance of ensembles.

3. Generally, the performance of ensembles of linear multivariate decision trees
(with 10 added attributes) is statistically similar to (Vowel and Waveform datasets)

4.6. RESULTS 83

D
at

as
et

N
o.

of
N

o.
of

N
o.

of
N

o.
of

N
o.

of
N

o.
of

Si
ng

le
at

tr
ib

ut
es

at
tr

ib
ut

es
at

tr
ib

ut
es

at
tr

ib
ut

es
at

tr
ib

ut
es

at
tr

ib
ut

es
Tr

ee
ad

de
d-

1
ad

de
d-

5
ad

de
d-

10
B

ag
gi

ng
A

da
B

oo
st

.M
1

R
an

do
m

ad
de

d-
1

ad
de

d-
5

ad
de

d-
10

(e
ns

em
bl

e)
(e

ns
em

bl
e)

(e
ns

em
bl

e)
Fo

re
st

s
(s

in
gl

e)
(s

in
gl

e)
(s

in
gl

e)
Pe

nd
ig

it
4.

62
1.

93
1.

44
2.

23
0.

94
1.

15
4.

56
4.

64
4.

51
4.

77
Tw

oN
or

m
14

.9
4

3.
45

2.
73

4.
34

3.
32

4.
11

14
.4

1
12

.2
5

10
.6

8
15

.8
3

Vo
w

el
29

.6
21

.5
6

16
.9

0
18

.6
2

11
.6

1
10

.7
4

30
.0

3
30

.1
6

28
.7

2
29

.7
0

W
av

ef
or

m
23

.5
3

20
.9

2
17

.5
3

17
.6

1
16

.2
5

16
.5

4
23

.9
7

24
.2

6
24

.3
2

24
.6

0

Ta
bl

e
4.

2:
C

la
ss

ifi
ca

tio
n

er
ro

rs
in

%
fo

rt
he

lin
ea

rm
ul

tiv
ar

ia
te

en
se

m
bl

e
m

et
ho

d.
1,

5
an

d
10

ne
w

at
tr

ib
ut

es
,c

re
at

ed
by

us
in

g
ra

nd
om

pr
oj

ec
tio

ns
,

ar
e

ad
de

d.
W

e
al

so
pr

es
en

te
d

th
e

re
su

lts
w

ith
ot

he
r

en
se

m
bl

e
m

et
ho

ds
.

R
es

ul
ts

su
gg

es
t

th
at

th
e

A
da

bo
os

t.M
1

an
d

R
an

do
m

Fo
re

st
s

ge
ne

ra
lly

pe
rf

or
m

be
tte

rt
ha

n
th

e
pr

op
os

ed
m

et
ho

d.

84CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

D
ataset

R
L

O
R

L
O

R
L

O
L

R
L

O
L

R
L

O
L

R
L

O
M

ulti-R
L

E
M

ulti-R
L

E
M

ulti-R
L

E
B

agging
Single

w
ith

1
w

ith
5

w
ith

10
w

ith
1

w
ith

5
w

ith
10

w
ith

1
w

ith
5

w
ith

10
Tree

new
new

new
new

new
new

new
new

new
attribute

attributes
attributes

attribute
attributes

attributes
attribute

attributes
attributes

Pendigit
1.81

1.68
1.67

1.72
1.64

1.46
2.13

1.52
1.42

2.23
4.77

Tw
oN

orm
3.90

3.91
3.82

3.67
3.24

3.17
3.80

3.38
2.81

4.34
15.83

Vow
el

16.43
16.25

16.38
15.74

15.21
14.61

17.52
14.73

13.21
18.62

29.70
W

aveform
17.26

17.13
17.18

16.48
16.26

16.61
17.13

16.62
16.21

17.61
24.60

Table
4.3:

C
lassification

errors
in

%
ofB

agging
and

its
com

bination
w

ith
R

L
O

,L
R

L
O

and
M

ulti-R
L

E
.B

old
num

bers
show

the
best

perform
ance.

R
esults

suggestthatcreating
a

large
num

ber
of

new
attributes

and
concatenating

w
ith

the
originalfeatures

is
the

best
strategy

in
the

R
L

O
fram

ew
ork.

4.6. RESULTS 85

or statistically better (Pendigit and TwoNorm) than Bagging, whereas generally
it is statistically worse than AdaBoost.M1 and Random Forests.

4.6.2 Comparative Study of RLO, LRLO and Multi-RLE

Results are shown in Table 4.3. We summarize our results in following points.

1. All methods generally improve the performance of Bagging. This indicates that
similar to the RLO′ approach [68], the LRLO approach and the Multi-RLE ap-
proach can also be used to improve the performance of Bagging ensembles.

2. The performance of RLO′ ensembles are almost similar when 1, 5 and 10 new
attributes are used. The split point in a RLO′ tree root node is decided randomly
(the attribute is the same as is used in the LRLO tree), hence creating large
number of attributes are not very useful in this case.

3. For two datasets (Vowel and Waveform), the performances of LRLO ensembles
with different new attributes (1, 5 and 10) are similar. For two datasets (Pen and
Two-Norm), the performance of LRLO ensembles with 10 new attributes is sta-
tistically better than LRLO ensembles with 1 new attributes. A LRLO tree has a
decision stump at the root node. The decision stump is trained on new attributes.
When we have a large number of new attributes, the decision stump has more
choices. Hence, a more accurate decision stump is highly probable with a large
number of new attributes. A more accurate decision stump at the root node may
lead to a more accurate LRLO tree. This may improve the performance of LRLO
ensembles.

4. For Multi-RLE ensembles, there is a steady increase in the classification accu-
racy with the increase in the number of new attributes.

5. For two datasets (Pendigit and TwoNorm), the performance of LRLO ensembles
with 10 new attributes is statistically better than all RLO′ ensembles. For the
other two datasets (Vowel and Waveform) LRLO ensembles and RLO ensembles
are statistically similar.

6. For all the datasets, the performance of Multi-RLE ensembles with 10 new at-
tributes is statistically better than all RLO′ ensembles.

86CHAPTER 4. A STUDY OF RANDOM LINEAR ORACLE FRAMEWORK AND ITS EXTENSIONS

7. The performance of Multi-RLE ensembles with 10 new attributes is statistically
similar to all LRLO ensembles for two datasets (Pendigit and Waveform). For
two datasets (TwoNorm and Vowel) the performance of Multi-RLE ensembles
is statistically better than all LRLO ensembles.

Results suggest that in the RLO framework the best strategy is to create a sufficiently

large number of attributes using the random projection transformation and concate-

nate these attributes with the original attributes, then learn a univariate tree.

4.7 Conclusion

In this chapter, first we presented a method to create linear multivariate decision trees
using an univariate decision tree algorithm. Random projections are used to create
new features that are linear combinations of the original features, these new features
are concatenated with the original features and decision trees are trained on these new
datasets. These trees are diverse linear multivariate decision trees as they use new fea-
tures along with original features. Different random projections create diversity. The
difference between this approach and the other popular techniques (to create linear
multivariate decision trees) discussed in Chapter 2 is that in this approach, we do not
learn linear combinations of attributes during the tree growing phase as they are de-
cided by random projections. Hence, the complexity of the tree growing phase does
not increase much (it is affected by the increased size of new datasets due to new
attributes).

We further show that the RLO′ framework can be studied by using random pro-
jections. We then showed that the method presented in first part of the chapter is the
generalization of the RLO′ framework. The experimental study suggest that the gen-
eralization of the RLO′ framework perform better than the original RLO framework.
The proposed method can use all the new attributes created by random projections,
whereas the original RLO′ framework uses only one new attribute. Hence, the pro-
posed decision trees have more decision surfaces. It helps them learning complex
decision boundaries. The position of a new random hyperplane in a RLO′ tree is de-
cided randomly and a random hyperplane is always placed at the top of decision tree
this may adversely affect the accuracy of the decision tree. However, in the proposed
method the positions of random hyperplanes are learnt and these hyperplanes can be
anywhere in the decision trees (this is decided by the decision tree algorithm), hence,
these tress are likely to be more accurate than RLO′ trees. These are the reasons for

4.7. CONCLUSION 87

the success of the proposed method.
In this chapter, we presented an ensemble method that uses random projections. In

the next chapter, we will study how the discretization process (a data transformation
process) can be used to address the representational problem.

Chapter 5

A Novel Ensemble Method for the
Representational Problem

In the previous chapter we used random projections to address the representational
problem of decision trees. In this chapter, two discretization methods, Random Dis-
cretization (RD) and Extreme Random Discretization (ERD) are presented that create
diverse discretized datasets. We then show that these two methods can be used to
create ensembles of decision trees. We discuss the relationship between the proposed
ensemble methods and existing ensemble methods. We present a theoretical study that
suggests that these ensembles have excellent representational power. We compare the
proposed ensemble method with other popular ensemble methods; Bagging, random
Forests and Adaboost.M1. We also study the effect of combining Multi-RLE (pre-
sented in the last Chapter) with random discretized ensembles.

5.1 Random Discretized Ensembles (RDEns)

This work explores a use of the discretization technique for creating decision tree en-
sembles. Discretization is a process that divides continuous values into a set of inter-
vals that can be considered as categorical values. As discussed in Chapter 2, all popular
discretization methods [32] create a unique discretized dataset. However, to create di-
verse classifiers, we need diverse datasets. In this work, we develop a novel discretiza-
tion method Random Discretization (RD) that create diverse discretized datasets. This
method in principle can be applied to any classifier (the learning process of which is
perturbed with different discretization) though here we evaluate only decision trees.
RD ensembles are created by using the RD method. RD ensembles are simple but

88

5.1. RANDOM DISCRETIZED ENSEMBLES (RDENS) 89

surprisingly accurate. The simple structure of a RD tree is helpful in the theoretical
analysis of RD ensembles.

In this section, we present Random Discretization Ensembles (RDEns) method.
First, we describe two novel methods Randomized Discretization (RD) and Extremely
Randomized Discretization (ERD) that create diverse discretized datasets.

5.1.1 Data Generation

Discretization divides an attributes values into different categories depending upon the
intervals they fall into. For example, to discretize a attribute into three categories, we
choose two points x1 and x2 between the minimum (xmin) and the maximum (xmax)

values of the attribute, if x1 < x2, the attribute values are discretized using the follow-
ing rules;

• if (x ≤ x1), the category of x = 1,

• if (x > x1) and (x ≤ x2), the category of x = 2,

• if (x > x2), the category of x = 3,
where x is the attribute value.

This example suggests that to create K categories, we need K −1 points. There are
different methods to create these points [32]. However, all these methods produce a
single and unique discretized dataset. For creating ensembles, we need diverse datasets
so that the learning on these datasets creates diverse classifiers. We propose a novel
method Random Discretization (RD) to select these K − 1 points. In this method, we
take into account the interdependencies of attributes to create discretization of various
attributes. To create K categories K − 1 data points are selected randomly from the

training data. For each attribute, every selected data point has one value, this way we
can have K − 1 data points for every attribute. The attribute can be discretized into
K categories using these K − 1 data points. It is possible that for some attributes,
we have less than K − 1 boundaries, as two or more selected data points may have
same values for these attributes. That will produce a fewer number of categories for
those attributes. In the extreme case, for some attributes, all the selected points may
have attributes values equal to minimum or maximum values of the attributes. In other
words, we have no point for the attributes between the minimum and the maximum
values of the attributes. K −1 points are selected randomly between the minimum and

90CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

Random Discretization
Input- Numeric training dataset T with n data points and m continuous attributes.
Output- Discretized training data set.
Begin
1- For K categories in each dimension, select K-1 data points randomly from the
training data.
for j=1...m do

2.1- Get the jth attributes values of K - 1 points and sort them.
2.2- If all points are equal to the minimum or the maximum values of the attribute.
Select K-1 points randomly having values between minimum or maximum values
of the attribute.

end for
for i=1...n do

3- Discretize the ith data point using the values got in step 2.
end for
End.

Figure 5.1: Random Discretization (RD) method.

the maximum values of the attribute for these kinds of attributes. The proposed RD
algorithm is presented in Fig. 5.1. Table 5.1 shows a two dimensional dataset. Two
points are needed to divide every dimension into three categories. Two data points are
selected randomly, for example, we select data points 2 and 4. For the attribute A1 ,
3.7 and 6.8 are the two points for discretization. For the attribute A2, 5.8 and 4.5 are
two points for discretization so the dataset is discretized using the following rules,

1. For A1 attribute

• if an attribute value≤ 3.7, the category of the attribute value = 1.

• if 6.8 ≥ an attribute value > 3.7, the category of the attribute value = 2.

• if an attribute value > 6.8, the category of the attribute value = 3.

2. For Y attribute

• if an attribute value≤ 4.5, the category of the attribute value = 1.

• if 5.8 ≥ an attribute value > 4.5, the category of the attribute value = 2.

• if an attribute value > 5.8, the category of the attribute value = 3.

5.1. RANDOM DISCRETIZED ENSEMBLES (RDENS) 91

Data point Attribute A1 Attribute A2 Class
1 2.3 6.8 C1

2 3.7 5.8 C2

3 3.8 9.8 C1

4 6.8 4.5 C1

5 3.2 8.1 C2

6 7.7 4.2 C2

Table 5.1: A two dimensional numeric dataset.

We also carried out experiments with the Extremely Randomazied Discretization
(ERD) method. In this method, to discretize a attribute, we randomly generate K − 1

points such that these points lie between the minimum and the maximum values of the
attribute.

5.1.2 Learning

In this section, we discuss the learning process of decision trees on discretized datasets
created by using RD and ERD.

Each decision tree in the ensemble learns on one discretized dataset from a pool
of different datasets created by RD. If the order of values of attributes is maintained,
a discretized dataset is an ordinal dataset. It can be treated as a continuous/integer
dataset or a categorical dataset. The learning of some classifiers depends on whether
the training dataset is continuous or categorical. In this section, we focus our discus-
sion on decision trees (C4.5 as we have used J48 decision tree as base classifier in our
experiments).

For multi-valued categorical attributes, generally, we get multi-way splits at each
node. In categorical attributes, categories are already provided so there is no concept
of finding the best boundary for split. However, when this attribute is treated as a con-
tinuous attribute, a binary split is obtained and each node is split at the best boundary.
This can be explained by the following example. Suppose that, at a node, the attribute
has four categories (1, 2, 3, 4). In this case, the node has four branches; one for each
value, if the attribute is treated as a categorical attribute. Whereas, if it is treated as
continuous there will be a binary split. There are three possible splits ({1,},{2,3,4}),
({1,2},{3,4}), ({1,2,3},{4}) and the best split will be selected using the selected split
criterion. We expect more accurate decision trees in this case as binary decision trees
avoid the data fragmentation problem [94] associated with trees with multi-way splits

92CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

Input- Dataset T with m continuous attributes and M size of the ensemble.

Training Phase
for i=1...M do

Data Generation
Use Random Discretization Λi to generate integer valued dataset Ti.
Learning Phase
Treat dataset Ti as continuous and learn Di decision tree on it.

end for

Classification Phase
For a given data point x
for i=1...M do

Convert x into a discretized data point xi by using Random Discretization (Λi.
Get the prediction for xi by the decision tree Di.

end for
Combine the results of M decision trees by the chosen combination rule to get the fi-
nal classification result (We use majority voting to combine the results of classifiers).

Figure 5.2: Random Distretization Ensembles (RDEns) algorithm.

nodes. However, the tree growing phase takes more time when the dataset is consid-
ered as continuous as compared to when the dataset is treated as categorical, because in
a continuous dataset the best split boundary has to be searched at each node. In RDEns,
each classifier is trained by using the complete training dataset that helps improve the
accuracy of a RD tree. RDEns algorithm is presented in Fig. 5.2.

5.2 Motivation For Random Discretization Ensembles

In this section, we focus our discussion on C4.5 [80] type decision trees (univariate
decision trees). In an ensemble, accurate and diverse classifiers are required. Ex-

treme Random Discretization (ERD) builds an ensemble of classifiers by changing cat-
egory boundaries. As discussed in Chapter 2, decision trees have the representational
problem because of their orthogonal properties. They have difficulty in learning non-
orthogonal decision boundaries. We will discuss the representational power of infinite
ERD decision trees for a diagonal decision boundary. We will discuss in this section
that when we have infinite ERD decision trees in a ensemble, a piece-wise continuous

function produced by the ERD ensemble approximates to the diagonal concept for a

5.2. MOTIVATION FOR RANDOM DISCRETIZATION ENSEMBLES 93

Figure 5.3: Division of axis by trees is uniform and fine grained. There is a diagonal
concept. The combination of trees approximates the diagonal concept. Right side of
the figure shows a small portion of the concept and its approximation by the ensemble
of ERD trees.

two dimensional data. Hence, ERD ensembles have better representational power as
compared to a single decision tree.

Decision trees have difficulty in learning a diagonal decision boundary. Ensembles
of decision trees solve this problem as combined results of decision trees produce a
good approximation of a diagonal decision boundary. As discussed in Chapter 2, Di-
etterich [29] shows that for majority voting an ensemble of small size decision trees
are similar to a large size decision tree and can create a good approximation of a di-
agonal decision boundary (Fig. 1.1). To get diverse decision trees, we need trees with
different split points. In Extreme Random Discretization, the dataset is discretized
randomly. When decision trees learn on discretized datasets, nodes can split only on
the bin boundaries. As the number of boundaries is small (for K categories, there
are only K-1 category boundaries) and these boundaries are random, there is a small
probability that decision trees trained on different discretized datasets have same node
splits for an attribute. In other words, there is a high probability for that each decision

tree divides the data space at different points. This situation is similar to the Fig. 5.3,
which suggests that with ERD ensembles, diagonal decision boundary can be learned
properly. In case of infinite ERD decision trees in an ensemble, a piece-wise contin-
uous function produced by ERD ensembles approximates the diagonal concept. We
may extend this argument to the other decision boundaries to show that ERD ensem-
bles have good representational power. On the basis of the above argument, it can be
hypothesized that a ERD ensemble has better representational power as compared to a

94CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

single decision tree.

The success of ensemble methods depends on the creation of uncorrelated classi-
fiers [90]. An RD tree has limited tree growing options as it has to follow bin bound-
aries. In other words, diverse decision trees are produced as different options are pro-
vided (different bin boundaries) at the tree growing phase. Very accurate trees may not
be obtained by RD, however, this technique ensures very diverse decision trees with
good representation powers for RD ensembles. We have discussed characteristics of
ERD ensembles, however as RD ensembles and ERD ensembles are quite similar, we
expect that RD ensembles have the same properties. In the next section, we present an
experimental study of RD ensembles.

5.3 Related Work

RD trees are similar to Extremely Randomized Tree (ERT) [47] and ensembles of trees
based on histograms [62]. Possible split boundaries in RDEns and these two methods
are created without considering the output (class labels); the best split cut-points are
selected using the selected split criteria from these possible split boundaries. In RD en-
sembles, the features are discretized, this is same as decision trees based on histograms
[20]. However, in ensembles of trees based on histograms, the discretization is done
at node. In other words, the discretization is local and in RD trees the discretization is
global. In ensembles of trees based on histograms, bin boundaries are not selected as
cut-points (after selecting the best bin boundary, they select the split point randomly in
some interval around the best interval boundary) whereas in a RD tree, one of the bin
boundaries is selected as the cut-point. In ERT, nodes are split at randomly selected
points. This can be treated as discretizing feature randomly into two bins. It is also
a case of local discretization. At each level, K features are randomly selected, each
feature is split randomly. Out of these K splits, the best split based on the selected
split criterion is selected for that level. Hence, if a feature is not selected for the split,
chances are that it will be considered at lower levels with different cut-points (as the
cut-point is selected randomly). In a RD tree, the data is discretized globally so dur-
ing the tree building the cut-points do not change (bin boundaries remain the same).
In the RD approach, bin boundaries of different features are related whereas in these
approaches, the discretization of one feature is independent of other features.

RD is a general approach in that, it can be used with any classifier in which different
discretization affects the learning of classifiers (for example Naive Bayes classifiers

5.4. EXPERIMENTS 95

[97]). In contrast, ensembles of trees based on histograms and ERT are constrained
to decision trees as they are based on the discretization at the nodes during the tree
growing phase.

5.4 Experiments

We carried out experiments on 16 pure continuous datasets taken from the UCI repos-
itory to study RDEns. The information about these datasets is given in Table A.2. We
used the J48 tree (the C4.5 decision tree [80] implementation) of Weka software [96],
with the unpruned option, for our experiments. The size of classifier ensembles was
set to 50. Bagging [11], AdaBoost.M1 [41] modules of Weka with the J48 decision
tree were used for comparison. We also did experiments with Random Forests [13].
Default parameters (other than the size of the ensembles) were used in all cases. At-
tributes were discretized into 5 categories by using the RD method for RD ensembles
and by using the ERD method for ERD ensembles.

As discussed in section 5.1.2, during the learning phase a discretized dataset can
be treated as a categorical dataset or a continuous dataset. We carried out experiments
with both kinds of learning. Symbols of four different kinds of ensemble methods are
given below;

1. RD(cat.) - Discretized datasets are created by using RD, and during the tree
growing phase, discretized datasets are treated as categorical datasets.

2. RD(cont.) - Discretized datasets are created by using RD, and during the tree
growing phase, discretized datasets are treated as continuous datasets.

3. ERD(cat.) - Discretized datasets are created by using ERD, and during the tree
growing phase, discretized datasets are treated as categorical datasets.

4. ERD(cont.) - Discretized datasets are created by using ERD, and during the tree
growing phase, discretized datasets are treated as continuous datasets.

We followed the 5 × 2 cross validation methodology [28, 4] discussed in Chapter
4 for these experiments.

Table 5.2 presents the results of various ensemble methods. The numbers in bold

96CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

show the best performances for the dataset. Results suggest that the learning dis-
cretized datasets as continuous datasets give better results as compare to when dis-
cretized datasets are treated as categorical datasets. For two datasets (Waveform, Ring-
Norm and Two-Norm) ERD ensembles perform very well, whereas for the Spambase
dataset, all ensemble methods perform better than a single classifier, the performance
of ERD ensembles is similar to a single classifier. In these experiments, we select
RD(cont.) method for comparative study.

Table 5.3 shows the comparative performance of RD(cont.) on different datasets.
For 14 out of 16 datasets, RD(cont.) performed statistically better than single decision
trees. Its performance is statistically similar with Bagging for 8 datasets, better for
8 datasets. RD(cont.) performs statistically better than AdaBoost.M1 for 3 datasets
and statistically worse than AdaBoost.M1 for 3 datasets. Its performance is similar
to Random Forest for 12 datasets, it is better than Random Forest for 4 datasets. The
comparative study indicates that RD(cont.) performs similar to or better than Bagging
and Random Forests, whereas it is quite competitive to AdaBoost.M1. In the next
section, we analyse RD ensembles and ERD ensembles to understand their behaviour.

5.5 Analysis

In the previous section, we showed that the RD ensemble method is very competitive
when compared with the other ensemble methods. In this section, we carried out fol-
lowing analysis to get insights of RD ensembles and ERD ensembles. We used four
datasets Pendigit, Segment, Vowel and Waveform for our analysis.

5.5.1 Noisy Data

As most real datasets have class noise, it is important to understand the robustness of
RD ensembles and ERD ensembles for noisy data. In this section, we present the study
of RD ensembles and ERD ensembles for the noisy data.

To add noise to the class labels, we followed the method proposed by Dietterich
[30] as discussed in Chapter 5. We carried out this exercise for the noise levels 10%,
and 20% for four datasets. We used again 5x2 cross validation for this study. The
ensemble size was 50.

The results are presented in Table 5.4 - Table 5.11. Results suggest that RD en-
sembles and ERD ensembles are quite robust to the class noise. With the exception of

5.5. ANALYSIS 97

D
at

a
R

D
R

D
E

R
D

E
R

D
B

ag
gi

ng
A

da
B

oo
st

.M
1

R
an

do
m

Si
ng

le
(c

at
.)

(c
on

t.)
(c

at
.)

(c
on

t.)
Fo

re
st

s
B

al
an

ce
14

.5
12

.5
16

.4
14

.4
17

.2
20

.9
18

.6
22

.4
B

re
as

tC
an

ce
r

3.
8

3.
6

3.
5

3.
8

4.
0

3.
6

3.
3

6.
2

E
co

li
17

.4
14

.6
16

.5
14

.2
17

.8
18

.4
18

.1
19

.5
G

la
ss

25
.9

27
.9

33
.6

30
.8

30
.6

28
.2

27
.5

37
.8

Io
no

sp
he

re
7.

1
6.

3
7.

0
6.

8
7.

2
7.

7
7.

5
10

.1
L

et
te

r
6.

2
5.

4
6.

9
6.

5
8.

5
4.

4
5.

3
15

.7
Pe

nd
ig

it
1.

6
1.

0
1.

2
1.

0
2.

3
0.

9
1.

2
4.

7
Pi

m
a-

di
ab

et
es

26
.2

26
.1

25
.4

24
.7

26
.1

28
.1

25
.6

28
.4

R
in

gN
or

m
3.

5
2.

9
2.

5
2.

3
5.

5
2.

6
4.

5
9.

9
Se

gm
en

t
2.

7
2.

6
4.

0
3.

8
3.

7
2.

3
2.

7
4.

6
So

na
r

24
.6

21
.1

21
.0

19
.8

26
.8

23
.0

21
.8

30
.9

Sp
am

6.
0

5.
5

8.
3

8.
3

6.
1

5.
4

5.
1

8.
5

Tw
oN

or
m

4.
2

3.
8

3.
1

3.
1

4.
0

3.
2

4.
0

16
.0

V
eh

ic
le

27
.5

26
.3

25
.8

26
.6

27
.0

24
.1

26
.2

30
.6

Vo
w

el
11

.3
11

.2
11

.7
11

.1
17

.8
11

.9
10

.8
30

.0
W

av
ef

or
m

16
.6

15
.8

15
.3

15
.4

17
.3

16
.0

15
.7

25
.2

Ta
bl

e
5.

2:
C

la
ss

ifi
ca

tio
n

er
ro

rs
(i

n
%

)f
or

di
ff

er
en

te
ns

em
bl

es
m

et
ho

ds
on

di
ff

er
en

td
at

as
et

s,
bo

ld
nu

m
be

rs
sh

ow
th

e
be

st
pe

rf
or

m
an

ce
.

R
D

en
se

m
bl

es
an

d
E

R
D

en
se

m
bl

es
ge

ne
ra

lly
pe

rf
or

m
si

m
ila

rt
o

or
be

tte
rt

ha
n

ba
gg

in
g

an
d

qu
ite

co
m

pe
tit

iv
e

w
ith

A
da

bo
os

t.M
1

an
d

R
an

do
m

Fo
re

st
s.

98CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

Dataset Bagging AdaBoost.M1 Random Single
Forests Tree

Balance + + + +
Breast Cancer ∆ ∆ ∆ +

Ecoli + + + +
Glass ∆ ∆ ∆ +
Iono ∆ + ∆ +

Letter + - ∆ +
Pendigit + ∆ + +
Pima-Dia ∆ ∆ ∆ ∆
RingNorm + ∆ + +
Segment + - ∆ +

Sonar ∆ ∆ ∆ +
Spam ∆ ∆ ∆ +

TwoNorm ∆ - ∆ +
Vehicle ∆ ∆ ∆ ∆
Vowel + ∆ ∆ +

Waveform + ∆ ∆ +
win/draw/lose 8/8/0 3/10/3 4/12/0 14/2/0

Table 5.3: Comparison Table- ‘+/-’ shows that performance of RD(cont.) is statis-
tically better/worse than that algorithm for that dataset, ’∆’ shows that there is no
statistically significant difference in performance for this dataset between RD(cont.)
and that algorithm. RD ensembles perform similar to or better than bagging and quite
competitive with Adaboost.M1 and Random Forests.

5.5. ANALYSIS 99

Noise RD RD ERD ERD Bagging AdaBoost.M1 Random Single
in % (cat.) (cont.) (cat.) (cont.) Forests Tree

0 1.6 1.0 1.2 1.0 2.3 0.9 1.2 4.7
10 1.6 1.2 1.3 1.1 2.1 1.7 1.4 10.9
20 1.7 1.2 1.4 1.1 2.4 3.3 1.9 20.8

Table 5.4: Classification errors (in %) for different ensembles methods for the Pendigit
dataset with different levels of noise, bold numbers show the best performance.

Noise Bagging AdaBoost.M1 Random Single
in % Forests Tree

0 + ∆ + +
10 + + + +
20 + + + +

Table 5.5: Comparison table for the Pendigit dataset with different levels of noise -
‘+/-’ shows that performance of RD(cont.) is statistically better/worse than that algo-
rithm for that dataset, ’∆’ shows that there is no statistically significant difference in
performance for this dataset between RD(cont.) and that algorithm.

the Waveform data, the performance of RD(cont.) is statistically better than the other
ensemble methods. For the Waveform data, RD(cont.) is similar to AdaBoost.M1 and
Random Forests, whereas it is better than Bagging.

5.5.2 The Study of the Ensemble Size

We studied the effect of ensemble sizes on the performance of ensembles. Fig. 5.4 - 5.7
show the classification errors against ensemble sizes for different ensemble methods
for different datasets. We used 5x2 cross validation for this study. The behaviour of
RD(cont.) is very similar to that of Random Forests. A single decision tree trained
using RD has more classification error as compared to a single J48 tree but as the
size of the ensemble is increased, RD ensembles perform better than a single decision
tree. This verifies the fact that in RD(cont.), we have diverse classifiers that account

Noise RD RD ERD ERD Bagging AdaBoost.M1 Random Single
in % (cat.) (cont.) (cat.) (cont.) Forests Tree

0 2.7 2.6 4.0 3.8 3.7 2.3 2.7 4.6
10 3.5 3.1 5.0 4.6 4.2 6.3 4.3 10.8
20 4.2 4.1 5.6 5.5 6.4 10.1 6.8 19.7

Table 5.6: Classification errors (in %) for different ensembles methods for the Segment
dataset with different levels of noise, bold numbers show the best performance.

100CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

Noise Bagging AdaBoost.M1 Random Single
in % Forests Tree

0 + - ∆ +
10 + + + +
20 + + + +

Table 5.7: Comparison table for the Segment dataset with different levels of noise -
‘+/-’ shows that performance of RD(cont.) is statistically better/worse than that algo-
rithm for that dataset, ’∆’ shows that there is no statistically significant difference in
performance for this dataset between RD(cont.) and that algorithm.

Noise RD RD ERD ERD Bagging AdaBoost.M1 Random Single
in % (cat.) (cont.) (cat.) (cont.) Forests Tree

0 11.3 11.2 11.7 11.1 17.8 11.9 10.8 30.0
10 12.0 11.5 12.6 11.0 16.8 16.0 13.8 33.1
20 17.3 15.6 16.9 16.1 25.0 24.1 21.6 39.2

Table 5.8: Classification errors (in %) for different ensembles methods for the Vowel
dataset with different levels of noise, bold numbers show the best performance.

Noise Bagging AdaBoost.M1 Random Single
in % Forests Tree

0 + ∆ ∆ +
10 + + + +
20 + + + +

Table 5.9: Comparison table for Vowel data with different levels of noise - ‘+/-’ shows
that performance of RD(cont.) is statistically better/worse than that algorithm for that
dataset, ’∆’ shows that there is no statistically significant difference in performance
for this dataset between RD(cont.) and that algorithm.

Noise RD RD ERD ERD Bagging AdaBoost.M1 Random Single
in % (cat.) (cont.) (cat.) (cont.) Forests Tree

0 16.6 15.8 15.3 15.4 17.3 16.0 15.7 25.2
10 16.6 16.5 15.9 15.8 17.8 16.8 16.2 31.3
20 17.5 17.1 16.9 16.9 18.3 18.3 16.9 37.4

Table 5.10: Classification errors (in %) for different ensembles methods for the Wave-
form dataset with different levels of noise, bold numbers show the best performance.

5.5. ANALYSIS 101

Noise Bagging AdaBoost.M1 Random Single
in % Forests Tree

0 + ∆ ∆ +
10 + ∆ ∆ +
20 + ∆ ∆ +

Table 5.11: Comparison table for the Waveform data with different levels of noise -
‘+/-’ shows that performance of RD(cont.) is statistically better/worse than that algo-
rithm for that dataset, ’∆’ shows that there is no statistically significant difference in
performance for this dataset between RD(cont.) and that algorithm.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Number of classifiers in the ensemble

C
la

ss
ifi

ca
tio

n
er

ro
r

in
 %

Pendigit

RD (Cont.)
Bagging
AdaBoostM1
Random Forests

Single Decision Tree (J48)

Figure 5.4: Classification errors of various ensemble methods for the Pendigit dataset
against the size of the ensemble.

for its better performance. We expect that RD increases the bias and the variance of
individual decision trees however the part of the variance is cancelled out by averaging
over a sufficiently large number of trees in the RD ensemble. As in RD trees there is
a less dependence of nodes splits on the output, there is a increase in the bias and the
variance but highly randomized method of discretization is helpful in creating diverse
decision trees that reduces the variance in the ensemble.

5.5.3 The Effect of the Number of Discretized Bins

In RD and ERD algorithms, the number of discretized bins is a user defined variable.
We carried out experiments with different number of bins to understand its effect on

102CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

0 20 40 60 80 100
2

3

4

5

6

7

8

9

10

Number of classifiers in the ensemble

C
la

ss
ifi

ca
tio

n
er

ro
r

in
 %

Segment

RD (Cont.)
Bagging
AdaBoostM1
Random Forests

Single Decision Tree (J48)

Figure 5.5: Classification errors of various ensemble methods for the Segment dataset
against the size of the ensemble.

0 20 40 60 80 100
10

15

20

25

30

35

40
Vowel

C
la

ss
ifi

ca
tio

n
er

ro
r

in
 %

Number of classifiers in the ensemble

RD (Cont.)
Bagging
AdaBoostM1
Random Forests

Single Decision
Tree(J48)

Figure 5.6: Classification error of various ensemble methods for the Vowel dataset
against the size of the ensemble.

5.5. ANALYSIS 103

0 20 40 60 80 100
15

20

25

30

Number of classifiers in the ensemble

C
la

ss
ifi

ca
tio

n
er

ro
r

in
 %

Waveform

RD (Cont.)
Bagging
AdaBoostM1
Random Forests

Single Decision Tree (J48)

Figure 5.7: Classification error of various ensemble methods for the Waveform dataset
against the size of the ensemble.

an ensemble classification accuracy. We used the 5x2 cross validation for this study.
The ensemble size was 50.

We tested RD ensembles and ERD ensembles on four datasets (Pendigit, Segment,
Vowel and Waveform) with 3, 5 and 10. Results are presented in Table 5.12- 5.15.
Results suggest that generally the performance of ensembles is best when we have 5 or
10 bins. These results can be explained easily for RD(cont.) and ERD(cont.). For small
number of bins, there will be a large loss of information that leads to poor decision
trees accuracy. When we increase the number of bins the discretized data becomes
more similar to the original data. For example, if the original data is {1,2,3,4,5,6},
and we have two equal width bins, the discretized data is {1,1,1,2,2,2}, whereas, if
we have 6 equal width bins, the discretized data will be {1,2,3,4,5,6} that is similar
to the original data. As the discretized data becomes more similar to the original data,
it improves the accuracy of the classifier trained on the discretized data. Results for
the single decision trees show this trend. However, a large number of bins reduces the
diversity of decision trees as discretized datasets are similar. With 5 and 10 numbers of
bins, it seems that we are getting good enough combination of accuracy and diversity.

Results show the similar behaviour in RD(cat.) and ERD(cat.). If the data is cate-
gorical, it is difficult to explain this relationship using the above argument as there are
two factors working together ; the loss of the information because of the discretization

104CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

Number of RD RD ERD ERD Single Single Single Single
bins (cat.) (cont.) (cat.) (cont.) RD RD ERD ERD

(cat.) (cont.) (cat.) (cont.)
Tree Tree Tree Tree

3 1.6 1.5 1.5 1.5 9.5 8.9 8.9 8.3
5 1.6 1.0 1.2 1.0 8.7 6.2 8.1 5.7

10 2.2 0.9 2.3 1.1 10.2 5.3 11.1 4.8

Table 5.12: Classification errors (in %) for different ensembles methods for the
Pendigit dataset with different number of discretized bins. Last four columns show
the classification error of a single decision tree, bold numbers show the best perfor-
mance.

Number of RD RD ERD ERD Single Single Single Single
bins (cat.) (cont.) (cat.) (cont.) RD RD ERD ERD

(cat.) (cont.) (cat.) (cont.)
Tree Tree Tree Tree

3 4.2 4.1 6.8 6.9 16.5 16.2 17.7 17.5
5 2.7 2.6 4.0 3.8 10.4 9.3 11.3 10.7

10 3.0 2.5 3.2 2.9 8.9 6.8 8.7 7.1

Table 5.13: Classification errors (in %) for different ensembles methods for the Seg-
ment dataset with different number of discretized bins. Last four columns show the
classification error of a single decision tree, bold numbers show the best performance.

and the data fragmentation problem. If the number of discretized bins is low, there will
be more loss of the information, but when the number of discretized bins is increased,
classifiers suffer due to the data fragmentation problem.

Different datasets may have a different number of discretized bins for their optimal
performance. The validation data may be used to search for it.

5.5.4 The Study of Time/Space Complexities

As discussed in Chapter 3, Catlett [20] suggests the use of a histogram to approximate
the split at the node to reduce the time to create a decision tree. We studied the time
required by the tree growing phase in RD trees and ERD trees. We also studied the size
complexity of RD decision trees to see their relationship with normal decision trees.
We used the 5x2 cross validation for this study. In each run, 50 unpruned trees were
created and the average results are presented. The number of discretized bins was 5.
Results are shown in Table 5.16 and Table 5.17. We observed following behaviour;

1. As expected the time taken in the tree growing phase of RD(cat.) trees and

5.5. ANALYSIS 105

Number of RD RD ERD ERD Single Single Single Single
bins (cat.) (cont.) (cat.) (cont.) RD RD ERD ERD

(cat.) (cont.) (cat.) (cont.)
Tree Tree Tree Tree

3 19.1 12.9 19.6 19.7 44.9 43.9 54.3 54.2
5 11.3 11.2 11.7 11.1 40.4 35.9 42.7 40.5
10 12.8 13.1 13.0 10.4 41.6 30.9 40.0 34.2

Table 5.14: Classification errors (in %) for different ensembles methods for the Vowel
dataset with different number of discretized bins. Last four columns show the classifi-
cation error of a single decision tree, bold numbers the show best performance.

Number of RD RD ERD ERD Single Single Single Single
bins (cat.) (cont.) (cat.) (cont.) RD RD ERD ERD

(cat.) (cont.) (cat.) (cont.)
Tree Tree Tree Tree

3 15.4 15.4 15.4 15.3 30.4 29.5 33.4 33.1
5 16.6 15.8 15.3 15.4 30.1 27.7 30.5 29.6
10 19.2 16.8 16.6 15.7 32.1 26.5 30.7 27.3

Table 5.15: Classification errors (in %) for different ensembles methods for the Wave-
form dataset with different number of discretized bins. Last four columns show the
classification error of single decision tree, bold numbers show the best performance.

ERD(cat.) trees when the data is treated as categorical is less than the time taken
in a normal decision tree. For example, for the Pendigit data, the average tree
growing time for the normal decision tree is 1.75 sec., whereas, the average time
for RD(cat.) is 0.39 sec. and for ERD(cat.) is 0.40 sec..

2. RD(cat.) trees and ERD(cat.) trees are shallow; there is not much difference
between the size of the trees and the number of leaves. For example, for the
Pendigit data the average number of leaves/size of tree for RD trees are 2089/2311,
whereas for ERD trees, the average number of leaves/size of tree are 2152/2392.
As we have five branches (as the number of attribute values is five) at each node,
the branching occurs at higher rate (as compared to binary split) that leads to a
large number of leaves.

3. Generally, the tree growing phase for RD(cont.) trees and ERD(cont.) trees is
faster than a J48 decision tree. For example, for the Segment data, on average a
RD tree took 0.22 sec.(the ERD tree took 0.22 sec.), and a J48 decision tree took
0.29 sec.. In the discretized data, we have few points to evaluate for the best split
criterion that leads to a faster tree growing phase.

106CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

Name of Single Single Single Single J48 with the
data RD (cat.) RD (cont.) ERD (cat.) ERD (cont.) original data

Pendigit 0.39 1.71 0.40 1.73 1.75
Segment 0.11 0.22 0.11 0.22 0.29
Vowel 0.09 0.13 0.10 0.13 0.20

Waveform 0.51 1.53 0.55 1.72 2.21

Table 5.16: Time in sec. taken in the tree growing phase for different trees.

Name of Single Single Single Single J48 with the
data RD (cat.) RD (cont.) ERD (cat.) ERD (cont.) org. data

num. of num. of num. of num. of num. of
leaves/ size leaves/ size leaves/ size leaves/ size leaves/ size

Pendigit 2089/2311 227/453 2152/2392 209/417 151/300
Segment 532/591 76/151 388/431 52/103 32/63
Vowel 622/691 107/213 658/731 102/203 68/135

Waveform 856/951 242/483 1045/1161 391/781 185/369

Table 5.17: Complexities of different trees.

4. The tree size complexity of RD (cont.) and ERD(cont.) trees is greater than the
normal J48 decision trees, for example, for the Pendigit data, the average number
of leaves/size of RD tree are 227/453 (the average number of leaves/size of tree
of ERD trees are 209/417), whereas for the normal decision trees, the average
number of leaves/size of tree are 151/300. As we get better node splits in normal
decision trees, it leads to shorter decision trees, whereas, split points in RD trees
and ERD trees are not optimal as we are using discretized data (the discretiztion
leads to the loss of the information). This leads to complex decision trees. This
also explain why the tree growing phase for the Pendigit data for RD(cont.) trees
and ERD(cont.) trees took almost the same time as a normal decision tree. The
time, taken in the tree growing phase for a tree, is decided by the two factors,
one the time taken in a node split and the second the number of nodes in the tree.
In RD(cont.) and ERD(cont.) trees a node split takes less time, but the higher
size complexity of the tree increases the time for the tree growing phase. In the
Pendigit data, it appears that both terms neutralize each other and we get almost
the same tree growing phase time for RD trees as the normal decision tree.

5.6. COMBINING RANDOM DISCRETIZED ENSEMBLES WITH MULTI-RLE107

5.6 Combining Random discretized Ensembles with Multi-
RLE

In Chapter 4, we presented the Multi-RLE framework that is useful for improving
different ensemble methods. In this section, we present Random Projection Random
Discretized Ensembles (RPRDE) that combines RD with the Multi-RLE technique.
In RD, we create a m dimensional discretized dataset (for m dimensional dataset),
whereas in Multi-RLE a d dimensional space is created by using RP and combined
with the original attributes. In RPRDE, this d dimensional space is concatenated with

the m dimensional discretized dataset. A univariate decision tree is trained on this
m+d dimensional dataset. Though, we train a univariate decision tree, we get decision
surfaces both orthogonal (due to the m discretized attributes) and oblique to the axes
defined by the attributes of the input space (due to the new d attributes). The algorithm
to create RPRD ensembles is presented in Fig. 5.8.

Experiments suggest that C4.5 trees do not do well with random projections [38].
As discussed in Chapter 3, Fradkin and Madigan[38] suggests “Random projections
and decision trees are perhaps not a good combination”. This means that new attributes
created by using random projections are not as informative as the original attributes.
Hence, when we combine the original attributes with the attributes created by using
random projections and train a univariate decision tree on it, then there is a strong
probability, that the original attributes are selected at higher levels as they are more
informative, whereas the attributes created using random projections will be selected
at lower levels as they are less informative. This suggests that these trees are not very
diverse (as they are similar at the higher levels).

In RPRD trees, the discretized original attributes are used. As there is a loss of
information due to the discretization, it makes the original attributes less informative.
Hence, when the discretized attributes are used, then there is more probability that
attributes created by using random projections will be selected at higher levels of deci-
sion trees. That ensures more diverse trees as different trees use different new attributes
(different trees use different attributes created by using different random projections).

108CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

Input- Original dataset T with m continuous features and k classes (C1, C2, .., Ck).
M the size of the ensemble.
Training Phase
for i=1...M do

Data Generation
1- Use Random Discretization Λi to create a m dimensional discretized dataset.
2- Use Random Projection Ri to create a d dimensional dataset.
3- Combine Si and Ri datasets to get m + d dimensional dataset Ti.
Learning Phase
Treating dataset Ti as continuous, learn Di decision tree on it.

end for
Classification Phase
For a given data point x
for i=1...M do

1- Convert x into m + d dimensional data point xi by using Random Discretization
Λi and Random Projection Ri.
2- Let pi,j(x) be the probability for xi by the decision tree Di to the hypothesis
that x comes from class Cj . Calculate pi,j(x) for all classes (j = 1..k).

end for
Calculate the confidence P (j) for each class Cj (j = 1..k) by the average contribution

method, P (j) = 1
L

M∑
i=1

pi,j(x).

The class with the largest confidence will be the class of x.

Figure 5.8: RPRDE algorithm. In this method attributes created by using RD and by
using RP are concatenated.

5.7 Motivation for Random Projection Random Dis-
cretization Ensembles (RPRDE)

In this section, we discuss why RPRDE should perform well:

1. We discussed in the last chapter (by using the random linear oracle framework)
that combining new random attributes (these attributes are the linear combina-
tions of the original attributes) with the original attributes can improve the perfor-
mance of different ensemble techniques. Therefore, we expect that by combin-
ing the attributes created by using random projection to the discretized attributes
(created by using RD) may improve the performance of RD ensembles.

2. As discussed in Chapter 2, some of the ensemble methods combine ensemble

5.8. EXPERIMENTS 109

methods that have different mechanisms, for example Random Forests [13] com-
bine Bagging with Random Subspaces, MultiBoosting [95] combines Bagging
with AdaBoost and Rotation Forest [83] combines randomization in the attribute
space division with Bagging. RD and RP have different mechanisms; RD is
based on the random discretization of the attributes whereas RP creates random
attributes that are the linear combinations of the original attributes. Hence, com-
bining these two approaches may be beneficial.

3. As some of the real datasets have class noise, it is important that ensemble meth-
ods should be robust to the class noise to handle these kinds of datasets. Ad-
aBoost.M1 is a quite successful ensemble algorithm, however, its performance
degrades in the presence of the class noise whereas ensemble algorithms based
on pure randomization are quite robust to the class noise [30, 13]. RPRDE
uses two randomization processes; random projections and random discretiza-
tion (proposed in the thesis). Similar to the other ensemble methods that are
created by using only randomized process, RPRDE is expected to be quite ro-
bust to the class noise.

5.8 Experiments

We carried out a comparative study of RPRD ensembles against the other popular
ensemble methods to test the effectiveness of the RPRDE approach. In this section, we
present our experimental results.

We did experiments with unpruned J48 (the Weka implementation of C4.5) deci-
sion trees. We carried out experiments with Bagging, Adaboost.M1, MultiBoosting
using J48 (unpruned) as the base model, and Random Forests. The sizes of the ensem-
bles were 10 and 100 for these experiments. For MultiBoosting, when the ensemble
size was 10, the number of subcommittees was chosen as 3 whereas for ensemble size
100, the number of subcommittees was chosen as 10. Default settings were used for
the rest of the parameters. Datasets were normalized to bring all attributes on the same
scale. We also present results with RP ensembles in which each classifier is trained on
the d dimensional space created by RP. The experiments were conducted following the
5 × 2 cross-validation [28, 4] as discussed in Chapter 4.

110CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

5.8.1 Parameters for RPRDE

There are three parameters for RPRDE;

1. Number of bins - As in Chapter 5, 5 bins are created by using 4 data points from
the training data for the discretization process. For each tree in the ensemble,
different 4 points were selected randomly.

2. Dimension d of the datasets created using RP - As discussed in Chapter 3,
Dasgupta [22] shows that the data from a mixture of J Gaussians can be pro-
jected into just O(log J) dimensions while retaining the approximate level of
separation between clusters. We selected d as 2(log m) where m is the number
of attributes. As in almost all datasets we tested, the number of classes (k) <

the number of attributes(m) and it is assumed that each class probability dis-
tribution is represented by a Gaussian distribution. Factor 2 was taken to have
a large dimension of the projected data so that the most of the information is
preserved. There was no guarantee that with this assumption, the correct value
of d is obtained. However, these new d attributes were added to the original
attributes (discretized attributes) so even if these new d attributes did not have
all the information of the dataset, it was expected that their combination with
original attributes improved the representational power of the decision trees.

3. Matrix for the Random Projection- We used following random matrix R as
discussed in Chapter 3,

rij =±√3 with probability 1/6 each or 0 with 2/3 probability. (5.1)

5.8.2 Controlled Experiment

As discussed in Chapter 2, univariate decision trees like C4.5 have difficulty in learn-
ing non-orthogonal decision boundary. This experiment was carried out to study the
performance of RPRD ensembles for learning a non-orthogonal concept. We did ex-
periment with a diagonal decision boundary.

We tested different ensemble methods on a simulated dataset. It was a 10 dimen-
sional data having a 5 dimensional diagonal concept. The ith attribute of the pattern x

was defined by xi, (i = 1 to 10) where xi is a random number between 0 to 1. Two
classes were defined as

5.8. EXPERIMENTS 111

Size of RPRDE RD RP Bagging AdaBoostM1 MultiBoost Random Single
the Forests Tree

ensemble
10 8.01 8.93 10.65 10.44 10.16 9.68 11.07 15.76

100 4.92 6.41 5.09 9.12 6.95 6.31 8.30 15.76

Table 5.18: Classification errors with the simulated data, bold numbers show the best
results. Results suggest that RPRDE ensembles can learn a diagonal problem very
well. This shows that these ensembles have good representational power.

5∑
i=1

xi ≤ 5/2, (5.2)

and
5∑

i=1

xi > 5/2. (5.3)

We created 2000 data points. Experiments were done using 5 × 2 cross-validation.
Results are presented in Table 5.18. Test results indicate that RPRD ensembles perform
statistically better than other popular ensemble methods. This shows that RPRD en-
sembles can learn non-orthogonal concepts very well. This vindicates our hypothesis
that RPRD ensembles have good representational power.

5.8.3 Comparative Study

In the second part of the experiments, we selected 21 pure continuous data sets from
the UCI Machine Learning Repository. The information about the datasets is presented
in Table A.2.

For the ensemble size 10, results are presented in Table 5.19 and Table A.3. RPRDE
is statistically similar to or better than other popular ensemble methods (Bagging (11
Wins/10 Draws), AdaBoost.M1 (9 Wins/12 Draws), MultiBoosting (9 Wins/12 Draws)
and Random Forests (9 Wins/12 Draws)). For the ensemble size 100, results are pre-
sented in Table 5.20 and Table A.4. For the ensemble size 100, generally RPRDE
performs similar to or better than other popular ensembles methods, however, its com-
parative advantage decreases (Bagging (13 Wins/8 Draws), AdaBoost.M1 (7 Wins/13
Draws/ 1 Loss), MultiBoosting (8 Wins/13 Draws/1 Loss) and Random Forests (5
Wins/16 Draws)).

RPRDE is the combination of two ensemble methods; RP ensembles and RD en-
sembles. Our motivation, to combine these two approaches, is that they are based on

112CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

different mechanisms so their combination may produce good results. Results indicate
that for almost all the dataset (except the RingNorm dataset, RP performed statisti-
cally better than RPRD when the ensemble size was 100) RPRDE has better results
than both of these methods or similar to the better one. For example, when ensemble
size was 10, for Phoneme dataset, Pendigit dataset, Segment dataset and Letter dataset,
RPRD performs better than both the methods, whereas for Optical dataset and Spam-
base data, it is similar to RD ensembles and for RingNorm dataset, it is similar to the
RP ensembles. This behaviour suggests that RPRD ensembles have got best of both
methods.

Experimental results suggest that RPRD ensembles are comparatively better when
ensemble sizes are small. This is true with ensembles consisting of accurate classi-
fiers with reasonable diversity. To understand the diversity-error behaviour of RPRD
ensembles, we study kappa-error plots [72] of various ensemble methods.

5.8.4 The Study of Ensemble Diversity

Kappa-error plots [72] is a method to understand the diversity-error behaviour of an
ensemble (for detail see Appendix 1.3). These plots represent a point for each pair
of classifiers in the ensemble. The x coordinate is a measure of diversity of the two
classifiers Di and Dj known as the kappa measure (low values suggest high diversity).
The y coordinate is the average error Ei,j of the two classifiers Di and Dj . When the
agreement of the two classifiers equals that expected by chance, κ = 0; when they
agree on every instance, κ = 1. Negative values of κ mean a systematic disagreement
between the two classifiers.

We draw kappa-error plots of for five datasets (Pen, Phoneme, Segment, Vowel,
Waveform40) for different ensemble methods. The scales of κ and Ei,j are same for
each given dataset so we can easily compare different ensemble methods. The size of
the ensembles was 10, so the total number of points was 45 in each plot. Plots are
presented in Fig. 5.9. RPRDE is not as diverse as AdaBoost.M1, MutiBoosting and
Random Forests, however, generally RPRDE is more diverse than Bagging. Classifiers
created by using RPRDE and Bagging generally have similar accuracy performance,
whereas they are generally more accurate than all other ensemble methods. One may
conclude that RPRDE behaviour is midway between these two types of methods Bag-
ging (classifiers; more accurate, less diverse) and Adaboost.M1 (classifiers; less accu-
rate, more diverse). RPRDE is able to improve diversity, but to a lesser degree than
Adaboost.M1 and Random Forests, without affecting accuracy of individual classifiers

5.8. EXPERIMENTS 113

D
at

a
R

PR
D

E
R

D
R

P
B

ag
gi

ng
A

da
B

oo
st

M
1

M
ul

tiB
oo

st
R

an
do

m
Si

ng
le

Fo
re

st
s

Tr
ee

B
al

an
ce

13
.4

1
15

.0
4

14
.8

8
18

.4
0

20
.5

1
19

.3
0

19
.7

5
21

.9
5

B
re

as
tC

an
ce

r
3.

41
3.

67
3.

41
4.

64
4.

04
4.

23
4.

12
5.

87
E

co
li

16
.1

3
16

.7
2

14
.9

9
18

.4
5

18
.2

4
18

.0
9

18
.4

5
20

.6
5

G
la

ss
29

.3
4

29
.3

5
32

.3
4

31
.1

2
31

.0
4

29
.9

0
26

.5
4

34
.0

2
Io

no
sp

he
re

7.
06

7.
26

6.
04

7.
47

7.
92

9.
57

7.
52

10
.4

8
L

et
te

r
6.

56
7.

32
13

.3
2

9.
94

6.
63

7.
78

7.
94

15
.4

7
O

pt
ic

al
3.

48
3.

77
5.

20
5.

71
3.

22
3.

90
4.

17
11

.0
3

Pe
nd

ig
it

1.
06

1.
41

1.
50

2.
85

1.
37

1.
74

1.
53

4.
69

Ph
on

em
e

11
.4

0
14

.5
4

14
.8

6
13

.0
4

12
.3

7
12

.4
5

11
.9

9
15

.6
3

Pi
m

a-
di

ab
et

es
24

.8
9

25
.3

9
24

.9
7

24
.8

2
27

.0
8

26
.0

1
25

.7
2

26
.8

9
R

in
gN

or
m

3.
24

4.
41

3.
23

6.
04

4.
14

4.
91

5.
84

10
.1

0
Sa

tim
ag

e
10

.3
8

10
.7

0
11

.0
2

11
.3

8
10

.6
7

10
.8

8
10

.6
2

15
.3

9
Se

gm
en

t
2.

68
3.

36
3.

42
4.

11
2.

71
3.

23
3.

28
4.

51
So

na
r

21
.5

4
21

.6
3

23
.3

7
24

.6
1

24
.9

0
24

.1
3

23
.8

7
27

.8
8

Sp
am

5.
92

5.
94

10
.0

3
6.

13
5.

53
5.

31
5.

99
8.

16
Tw

oN
or

m
3.

71
5.

73
4.

28
6.

23
5.

90
6.

16
6.

23
16

.1
6

V
eh

ic
le

26
.7

0
26

.5
5

30
.7

1
27

.0
7

26
.3

3
27

.0
3

27
.3

0
30

.3
6

Vo
w

el
11

.3
9

12
.8

7
13

.2
3

20
.4

9
15

.4
5

18
.5

6
15

.3
1

30
.2

4
W

av
ef

or
m

21
16

.9
9

17
.5

2
16

.8
2

18
.6

7
18

.8
6

18
.3

2
18

.5
0

24
.4

5
W

av
ef

or
m

40
17

.7
0

18
.1

1
20

.2
6

18
.9

2
19

.2
4

18
.6

6
19

.1
7

25
.4

0
Y

ea
st

42
.0

6
43

.6
0

42
.7

8
42

.2
1

44
.9

2
42

.6
5

43
.4

5
47

.2
5

Ta
bl

e
5.

19
:

C
la

ss
ifi

ca
tio

n
er

ro
r(

in
%

)
fo

r
di

ff
er

en
te

ns
em

bl
es

m
et

ho
ds

on
di

ff
er

en
td

at
as

et
,b

ol
d

nu
m

be
rs

sh
ow

be
st

pe
rf

or
m

an
ce

.
E

ns
em

bl
e

si
ze

10
.

114CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

D
ata

R
PR

D
E

R
D

R
P

B
agging

A
da

B
oostM

1
M

ultiB
oost

R
andom

Single
Forests

Tree
B

alance
11.30

13.56
11.26

18.18
21.86

20.35
18.91

21.95
B

reastC
ancer

3.23
3.38

2.98
4.69

3.61
3.49

3.89
5.87

E
coli

15.06
14.40

14.48
16.79

16.49
16.40

16.79
20.65

G
lass

27.85
27.29

30.00
28.88

27.57
28.60

24.67
34.02

Ionosphere
5.81

6.56
5.53

6.89
7.86

7.79
6.50

10.48
L

etter
4.22

4.93
6.39

8.52
4.08

4.10
4.92

15.47
O

ptical
2.45

2.76
2.11

4.60
1.91

2.06
2.11

11.03
Pendigit

0.73
0.93

0.95
2.29

0.83
0.91

1.08
4.70

Phonem
e

10.54
13.96

13.86
12.21

10.48
10.50

10.61
15.63

Pim
a-diabetes

23.57
23.62

25.47
23.36

26.20
25.21

23.88
26.85

R
ingN

orm
1.90

2.61
1.55

5.30
2.27

2.44
4.45

9.82
Satim

age
9.11

9.47
9.90

10.40
8.91

9.02
9.21

15.39
Segm

ent
2.07

2.77
2.82

3.70
2.13

2.40
2.55

4.51
Sonar

18.85
19.90

18.17
22.50

20.58
22.01

19.04
27.88

Spam
5.45

5.59
8.54

5.92
5.29

4.42
5.06

8.16
Tw

oN
orm

2.47
3.64

2.47
3.69

2.83
2.87

3.65
16.16

V
ehicle

24.42
24.97

29.43
26.87

23.86
24.04

25.90
30.36

Vow
el

7.23
8.67

7.17
17.23

10.77
11.27

9.88
30.24

W
aveform

21
14.64

15.41
14.36

17.14
15.62

15.61
15.62

24.45
W

aveform
40

15.28
15.58

15.18
17.29

15.26
15.26

15.49
25.40

Y
east

39.50
40.04

39.49
40.07

42.51
41.33

40.61
47.25

Table
5.20:C

lassification
errors(in

%
)fordifferentensem

ble
m

ethodson
differentdatasets,bold

num
bersshow

bestperform
ance,the

ensem
ble

size
100.R

PR
D

ensem
bles

generally
perform

sim
ilarto

orbetterthan
otherensem

ble
m

ethods,how
ever,theircom

petitive
advantage

is
m

ore
forsm

allerensem
bles.

5.8. EXPERIMENTS 115

Dataset RPRDE SVM AdaBoost with
RBF-Network

Banana 12.11 11.53 12.26
Breast-Cancer 28.44 26.04 30.36

Daibetes 24.34 23.53 26.47
Flare-Solar 35.41 32.43 35.70

German Credit 23.32 23.61 27.45
Heart 17.73 15.95 20.29
Image 1.71 2.96 2.73

Ring-Norm 3.03 1.66 1.93
Splice 4.46 10.88 10.14

Thyroid 4.35 4.80 4.40
Titanic 22.29 22.42 22.58

Two-Norm 2.81 2.96 3.03
Waveform 10.39 9.88 10.84

Table 5.21: Average classification errors (in %) of different methods on different
datasets, bold numbers show the best performance.

as much as Adaboost.M1, Random Forests and MutiBoosting.

Kappa-error plots indicate that accurate classifiers with reasonable diversity is the
reason for the success of RPRDE.

5.8.5 RPRDE against the Other Classifiers

We carried out the comparative study of RPRDE against other classifiers. We se-
lected support vector machines (SVM) for this comparison. We also present results
for AdaBoost with RBF-Network. The information about different datasets used in
the experiments is given in [82]. We carried out experiments on all the realizations of
different datasets given in http://ida.first.fraunhofer.de/projects/bench/. Classification
results for SVM and AdaBoost with RBF-Network were taken from [82]. As the size
of the AdaBoost with RBF-Network was 200 [82], the size of RPRD ensembles was
chosen to be 200. Results are presented in Table 5.21. Results suggest RPRDE is quite
competitive against SVM.

5.8.6 Noisy Data

As most real datasets have class noise, it is important to understand the robustness of
RPRD ensembles for the noisy data. As suggested in Chapter 2, the performance of
boosting methods degrade in the presence of the class noise. In this section, we present

116CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

RPRDE Bagging AdaBoost.M1 MultiBoosting RF

(a) Pen (b) Pen (c) Pen (d) Pen (e) Pen

(f) Phoneme (g) Phoneme (h) Phoneme (i) Phoneme (j) Phoneme

(k) Segment (l) Segment (m) Segment (n) Segment (o) Segment

(p) Vowel (q) Vowel (r) Vowel (s) Vowel (t) Vowel

(u) Waveform (v) Waveform (w) Waveform (x) Waveform (y) Waveform

Figure 5.9: Kappa-error plots for four ensemble methods, First column- RPRDE, sec-
ond column - Bagging, third column - AdaBoost.M1, fourth column - MultiBoosting
and last column RF. x-axis - Kappa, y-axis - the average error of the pair of classifiers.
Axes scales are constant for various ensemble methods for a particular dataset (each
row). Lower κ represents a higher diversity. The plots suggest that RPRDE classifiers
are accurate with reasonable diversity.

5.8. EXPERIMENTS 117

our experimental results to study the sensitivity of RPRDE to the class noise. To add
noise to the class labels, we followed the method proposed by Dietterich [30]. To add
classification noise at a rate r, we chose a fraction r of the instances and changed their
class labels to be incorrect, choosing uniformly from the set of incorrect labels. We
carried out experiments for the noise levels 10% for all the datasets.

Results, when the ensemble size was 10, are presented in Table 5.22 and A.5. Re-
sults indicate that RPRDE is quite robust to the class noise. Its comparative advantage
increases (as compared to without noise data) for the noisy data. Except Bagging (the
performance of RPRDE is statistically worse than Bagging for the Spambase dataset)
RPRD performed statistically similar to or better than other ensemble methods (Bag-
ging (12 Wins/8 Draws/ 1 Loss), AdaBoost.M1 (16 Wins/5 Draws), MultiBoosting (15
Wins/6 Draws/1 Loss) and Random Forests (18 Wins/8 Draws)).

We also carried out same experiments when the size of ensemble was 100. Re-
sults are presented in Table 5.23 and Table A.6. Except Bagging (the performance of
RPRDE is statistically worse than Bagging for the Spambase data) RPRDE performed
statistically similar to or better than other ensembles methods, however, its compara-
tive advantage decreases (as compared to ensembles of size 10) (Bagging (13 Wins/8
Draws), AdaBoost.M1 (14 Wins/7 Draws), MultiBoosting (11 Wins/10 Draws) and
Random Forests (10 Wins/11 Draws)).

Results demonstrate that RPRDE is quite robust to the class noise. This is probably
due to the fact that RPRDE does not put so much emphasis on incorrectly classified
instances as AdaBoost does. Overfitting is one of the weaknesses of oblique decision
trees [59]. We create ensembles of RPRD trees this helps in avoiding overfitting prob-
lem that is associated with single oblique decision tree as in an ensemble the final result
is the combination of all trees. For attributes created by RD, decision boundaries are
created without considering the output. During the learning phase, the output is used
only to decide on the split among these boundaries. The less participation of the output
in generating a RPRDE tree is one of the probable reason for its robustness to the class
noise.

5.8.7 Combining RPRD with Other Ensemble Methods

In this section, we study how two popular ensemble methods, Bagging and AdaBoost.M1
get affected by RPRD. As discussed in Chapter 2, different ensemble methods are com-
binations of two ensemble methods. We follow the philosophy of Multiboosting (dis-
cussed in Chapter 2) to combine RPRD with Bagging and AdaBoost.M1. We created

118CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

D
ata

R
PR

D
E

R
D

B
agging

A
da

B
oost.M

1
M

ultiB
oosting

R
andom

Single
Forests

Tree
B

alance
15.49

15.34
19.74

26.07
21.82

24.31
25.14

B
reastC

ancer
5.67

5.47
6.72

8.75
6.35

7.63
8.49

E
coli

17.69
17.40

19.70
25.27

21.42
21.18

24.79
G

lass
31.94

31.39
34.63

37.13
37.13

31.94
40.93

Ionosphere
10.85

10.68
11.59

14.09
13.58

11.19
16.42

L
etter

7.81
8.63

11.15
12.92

11.41
11.81

18.41
O

ptical
3.94

4.40
6.70

6.01
6.15

5.35
18.43

Pendigit
1.29

1.42
3.42

3.46
3.06

2.61
11.42

Phonem
e

13.49
15.22

14.71
18.44

15.24
15.09

18.80
Pim

a-diabetes
28.44

27.69
27.32

29.50
28.04

28.29
29.66

R
ing-N

orm
5.06

6.48
6.43

8.57
6.72

7.08
12.29

Satim
age

10.80
11.24

12.35
12.77

12.17
11.47

22.98
Segm

ent
3.36

3.54
5.20

7.02
5.61

5.66
10.93

Sonar
27.59

27.02
29.81

30.96
30.96

24.42
34.61

Spam
9.62

8.63
8.36

11.38
8.96

8.80
11.63

Tw
o-N

orm
5.36

7.21
7.36

10.32
7.89

8.12
17.88

V
ehicle

28.04
27.71

28.42
29.69

28.02
29.33

34.34
Vow

el
15.40

18.31
23.30

22.52
23.06

22.92
33.49

W
aveform

21
18.11

18.70
19.78

21.08
19.78

19.84
29.45

W
aveform

40
19.05

19.13
20.08

21.22
20.30

20.49
31.68

Y
east

42.90
42.56

43.67
47.83

45.35
45.16

52.17

Table
5.22:

C
lassification

errors
(in

%
)

for
differentensem

ble
m

ethods
on

differentdatasets,bold
num

bers
show

bestperform
ance,

the
ensem

ble
size

10,the
class

noise
is

10%
.

R
PR

D
ensem

bles
generally

perform
sim

ilar
to

or
better

than
other

ensem
ble

m
ethods

and
theircom

petitive
advantage

is
m

ore
forthe

noisy
data.

5.8. EXPERIMENTS 119

D
at

a
R

PR
D

E
R

D
B

ag
gi

ng
A

da
B

oo
st

.M
1

M
ul

tiB
oo

st
in

g
R

an
do

m
Si

ng
le

Fo
re

st
s

Tr
ee

B
al

an
ce

13
.6

1
13

.8
6

18
.8

5
26

.3
5

23
.4

1
21

.7
2

25
.1

4
B

re
as

tC
an

ce
r

4.
98

5.
32

5.
90

8.
69

8.
57

6.
18

8.
49

E
co

li
15

.4
4

15
.6

2
18

.2
2

22
.8

9
21

.4
8

18
.5

8
24

.7
9

G
la

ss
29

.6
3

28
.6

1
31

.9
4

34
.7

2
33

.8
9

30
.0

9
40

.9
3

Io
no

sp
he

re
8.

92
9.

82
10

.6
8

11
.7

6
11

.5
9

9.
54

16
.4

2
L

et
te

r
4.

93
5.

67
8.

63
11

.5
2

8.
51

7.
74

18
.4

1
O

pt
ic

al
2.

58
2.

82
4.

66
2.

27
2.

45
2.

22
18

.4
3

Pe
nd

ig
it

0.
71

1.
03

2.
48

1.
24

1.
20

1.
21

11
.4

1
Ph

on
em

e
12

.3
8

14
.6

9
13

.8
5

18
.4

4
18

.4
4

13
.2

8
18

.8
0

Pi
m

a-
di

ab
et

es
25

.6
3

26
.0

8
25

.7
7

29
.5

6
29

.4
0

26
.3

6
29

.6
6

R
in

g-
N

or
m

1.
98

2.
77

4.
70

3.
00

2.
74

2.
99

12
.2

9
Sa

tim
ag

e
9.

36
9.

69
10

.8
4

9.
40

9.
54

9.
33

22
.9

9
Se

gm
en

t
2.

73
2.

84
4.

29
6.

20
4.

52
4.

20
10

.9
4

So
na

r
25

.9
6

26
.0

6
27

.5
26

.9
2

27
.1

2
22

.1
2

34
.6

1
Sp

am
7.

98
7.

76
7.

73
10

.4
8

9.
15

7.
04

11
.6

3
Tw

o-
N

or
m

2.
74

3.
53

3.
82

3.
90

3.
59

3.
62

17
.8

8
V

eh
ic

le
25

.9
7

26
.5

6
27

.2
4

26
.7

0
26

.6
0

27
.3

3
34

.3
4

Vo
w

el
11

.0
2

12
.3

3
20

.0
6

18
.2

9
17

.8
6

15
.4

6
33

.4
9

W
av

ef
or

m
21

15
.0

7
15

.8
9

17
.1

5
16

.2
3

15
.7

0
16

.0
4

29
.4

5
W

av
ef

or
m

40
15

.5
1

15
.7

5
17

.4
6

15
.8

3
15

.4
6

15
.4

2
31

.6
8

Y
ea

st
40

.6
4

40
.6

6
42

.2
5

45
.8

4
43

.9
7

42
.3

9
52

.1
7

Ta
bl

e
5.

23
:

C
la

ss
ifi

ca
tio

n
er

ro
rs

(i
n

%
)

fo
r

di
ff

er
en

te
ns

em
bl

e
m

et
ho

ds
on

di
ff

er
en

td
at

as
et

s,
bo

ld
nu

m
be

rs
sh

ow
be

st
pe

rf
or

m
an

ce
,

th
e

en
se

m
bl

e
si

ze
10

0,
th

e
cl

as
s

no
is

e
is

10
%

.R
PR

D
en

se
m

bl
es

ge
ne

ra
lly

pe
rf

or
m

si
m

ila
rt

o
or

be
tte

rt
ha

n
ot

he
re

ns
em

bl
e

m
et

ho
ds

,
ho

w
ev

er
,t

he
ir

co
m

pe
tit

iv
e

ad
va

nt
ag

e
is

m
or

e
fo

rs
m

al
le

re
ns

em
bl

es
.

120CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

Dataset Bagging Bagging + RPRD
Balance 18.18 (+) 12.93

Breast Cancer 4.69 4.32
Ecoli 16.79 14.64
Glass 28.88 28.69

Ionosphere 7.88 6.63
Letter 8.24 (+) 5.61

Optical 4.59 (+) 2.74
Pendigit 2.29 (+) 0.96

Pima-diabetes 23.36 23.98
Phoneme 12.21 (+) 11.18

Ring-Norm 5.3 (+)0 2.31
Satimage 10.41 (+) 9.72
Segment 3.70 (+) 2.48

Sonar 22.5 20.19
Spam 5.92 5.70

Two-Norm 3.69 (+) 2.75
Vehicle 26.87 23.12
Vowel 17.23 (+) 9.56

Waveform21 17.14 (+) 14.82
Waveform40 17.29 (+) 15.64

Yeast 40.07 39.64
win/draw/loss 12/9/0

Table 5.24: Comparative study of Bagging against RPRD + Bagging. ‘+/-’ shows
that performance of RPRD + Bagging is statistically better/worse than Bagging for
that dataset. or most of the data studied, the combination of RPRD with Bagging has
positive effect.

100 trees with the original data using Bagging process. In the second process, we cre-
ated 10 different datasets using RPRD and 10 trees using Bagging are created for each
dataset. Hence in both cases 100 trees are trained. The same procedure was followed
with AdaBoost.M1. Experiments were carried out with the same 5 × 2 cross valida-
tions methodology as suggested Chapter 4. Results (Table 5.24 and Table 5.25) suggest
that for some datasets RPRD has positive effect on Bagging (12Wins/9 Draws for Bag-
ging + RPRD) and AdaBoost.M1 (5 Wins/15 Draws for AdaBoost.M1 + RPRD). This
indicates that RPRD can be combined with other ensemble methods to improve their
performance.

5.8. EXPERIMENTS 121

Dataset AdaBoost.M1 AdaBoost.M1 + RPRD
Balance 21.86 (+) 14.50

Breast Cancer 3.61 3.48
Ecoli 16.49 15.77
Glass 27.57 26.36

Ionosphere 7.84 (+) 5.93
Letter 4.12 4.49

Optical 1.91 1.87
Pendigit 0.83 0.73

Pima-diabetes 26.2 25.13
Phoneme 10.48 10.38

Ring-Norm 2.27 2.08
Satimage 9.03 8.91
Segment 2.13 2.06

Sonar 20.58 (+) 16.54
Spam 5.29 (+) 4.52

Two-Norm 2.83 2.71
Vehicle 23.86 24.83
Vowel 10.77 (+) 7.47

Waveform21 15.62 15.01
Waveform40 15.26 15.41

Yeast 42.51 41.09
win/draw/loss 5/16/0

Table 5.25: Comparative study of AdaBoost.M1 against RPRD + AdaBoost.M1. ‘+/-
’ shows that performance of RPRD + AdaBoost.M1 is statistically better/worse than
AdaBoost.M1 for that dataset. The combination of RPRD with AdaBoost.M1 is less
successful than the combination of RPRD with Bagging.

122CHAPTER 5. A NOVEL ENSEMBLE METHOD FOR THE REPRESENTATIONAL PROBLEM

5.9 Weaknesses

Both RD and RP can be applied only for the pure continuous datasets. That restricts the
application of RPRDE only for the pure continuous datasets. In this approach, we use
random projections to create new attributes that add extra computational cost. These
new attributes are added to the original attributes that increase the size of the training
dataset. Hence, the tree learning phase may need more computational resources as
compared to the data with the original dataset. However, the performance of RPRDE
justifies the additional computational cost.

5.10 Conclusion

Discretization is a popular data transformation technique in which real data is con-
verted into categorical data by creating category boundaries. In this chapter, we pre-
sented two discretization methods that create diverse discretized data. In these meth-
ods, category boundaries are created randomly. Different decision trees trained on
these diverse datasets are diverse as they have different split points. We showed that
decision tree ensembles created by using these two methods can approximate complex
decision boundaries, hence, address the representational problem of decision trees.
These ensembles are quite competitive to other popular ensemble methods. These
ensembles are quite robust to the class noise. The less participation of the output in
deciding on the split point is the probable reason for this behaviour.

We also presented RPRD ensembles. That is based on RD and Multi-RLE. We
discussed the reasons for the success of RPRD ensembles. Similar to the ensemble
methods that combine techniques that have different mechanisms, the combination of
two schemes; random discretization and random projections, are the reason for the
success of this technique.

In this chapter, we showed that the discretization process can be used to create
decision tree ensembles that addresses the representational problem and the discretiza-
tion process can be combined with random projections to create a successful ensemble
method. In the next chapter, we discuss a data transformation scheme, random ordi-
nality that is used to create decision tree ensembles. These ensembles reduce the data
fragmentation problem associated with decision trees.

Chapter 6

A Novel Ensemble Method to Reduce
the Data Fragmentation Problem

In the last two chapters, we use random projections and the discretization process to
address the representational problem of decision trees. In this chapter, we introduce a
data transformation technique, random ordinality (RO). to reduce data fragmentation
problem associated with decision trees. This technique works for multi-valued categor-
ical datasets. It is based on random projection of the categorical data into a continuous

space. We show how RO can be used to create ensembles of binary decision trees that
resist the data fragmentation problem. We also present the study of RO attributes using
the information theoretic framework. We compare the RO ensemble method against
the other popular ensemble methods. We then present the analysis of RO ensembles.

6.1 Data fragmentation problem

Variables having categories without a natural ordering are called categorical [3]. As
discussed in Chapter 2, datasets with multi-valued categorical attributes can cause ma-
jor problems for decision trees. While multi-way splits produce a more comprehensible
tree, they may increase the data fragmentation problem [94]; the continuous partition-
ing of the training set at every tree node reduces the number of examples at lower-level
nodes. As decisions in the lower levels nodes are based on increasingly smaller frag-
ments of the data, some of them may not have much statistical significance. Creating
binary splits by splitting the attribute values into two groups is a method to avoid
multi-splits. Breiman [14] suggests exhaustive search to find the best binary split. If
the number of attribute values is |A| then the number of nontrivial binary splits is given

123

124CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

by 2(|A|−1) − 1. Selecting the best split by this method is computationally expensive.
Another way to obtain a binary split for a multi-valued categorical attribute is to par-
tition the data points using an attribute value [14, 56, 35]. In this method, all the data
points with that attribute value form one group, whereas the other group is formed with
the other examples.

Motivated by the advantages of binary decision trees for multi-valued categorical

data, in the proposed work we build classifier ensembles of binary decision trees for
these kinds of datasets. We solve the node splitting problem under some random con-
straints. These random constraints are helpful in building classifier ensembles as the
randomization helps in creating diversity. Using this method, it is not necessarily true
that we get the best split as suggested by Breiman [14] (the best split from all possible
binary splits). However, since we want to create an ensemble, different node splits are
necessary to create diverse decision trees. Furthermore there is no change in the tree
building process so there is no extra computational cost for the tree building phase. We
discuss this algorithm in the next section.

6.2 Random Ordinality Ensembles

The handling of categorical attributes is difficult as the categories have no intrinsic

order. We can exploit this property to build an ensemble of binary decision trees. Our
method is based on data manipulation so it is not specific to any split criterion. Random
Ordinality (RO) creates diverse training datasets. The learning process is exactly a de-
cision tree on standard continuous data - each binary split gives maximum information
gain based on the selected split criterion, but based on an imposed ordinality.

6.2.1 Data Generation

As there is no natural order given for the categorical attribute values, we can enforce

random ordinality on these attribute values (Fig. 6.1). This implies a random pro-
jection of the categorical attributes into a continuous space. We explain our method
using the example data given in Table 6.1. This data has four attribute values (Cow,
Dog, Cat, Rat) for one of its attributes (attribute 1). We assign some integer number (1
to number of attribute values) to them randomly such that no two attribute values are
assigned the same integer value. For example, we assign Dog = 1, Cow = 2, Rat = 3,
Cat = 4 to the attribute values of the first attribute. The enforced ordinality is therefore

6.2. RANDOM ORDINALITY ENSEMBLES 125

Figure 6.1: The example of multi-valued categorical attributes having four values A,
B, C, D and are converted to ordinal data by imposing random ordinality, A = 4, B =
3, C = 1, D = 2.

.

Attribute 1 Attribute 2 Class
Cow Sheep 1
Dog Sheep 1
Cow Bat 1
Dog Bat 1
Rat Deer 2
Rat Bird 2
Cat Deer 2
Cat Bird 2

Table 6.1: Original Dataset - All attributes are categorical.

Dog<Cow<Rat<Cat. We follow the same process for all the multi-valued categorical
attributes independently. Our final dataset will be integer-valued, therefore having a
natural ordering. Following this method we can generate diverse continuous datasets
from the given training dataset. Two new datasets are given in Table 6.2 and Table 6.3.

6.2.2 Learning

Each decision tree in the ensemble learns on one dataset from the pool of different
datasets created by RO. During learning, these integer-valued attributes are treated as
continuous attributes. We have binary splits in the tree as for continuous data attributes
the node is split at a threshold value. For our example, we have three possible splits,
{(1), (2,3,4)}, {(1,2), (3,4)} and {(1,2,3), (4)}. The best split is decided by the desired
split criterion. We avoid the data fragmentation problem as there is a binary split. We
have presented our proposed algorithm in Fig. 6.2.

126CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Attribute 1 Attribute 2 Class
2 3 1
1 3 1
2 4 1
1 4 1
3 1 2
3 2 2
4 1 2
4 2 2

Table 6.2: New continuous
data created from the dataset
presented in Table 6.1 with
ordering of attribute 1 val-
ues as Dog<Cow<Rat<Cat
and attribute 2 values as
Deer<Bird<Sheep<Bat.

Attribute 1 Attribute 2 Class
3 1 1
1 1 1
3 2 1
1 2 1
2 3 2
2 4 2
4 3 2
4 4 2

Table 6.3: New continuous
data created from the dataset
presented in Table 6.1 with
ordering of attribute 1 val-
ues as Dog<Rat<Cow<Cat
and attribute 2 values as
Sheep<Bat<Deer<Bird.

Input- Dataset T and M size of the ensemble.

Training Phase
for i=1...M do

Data Generation
Apply Random Ordinality (Oi) to generate integer valued dataset Ti.
Learning Phase
Treat dataset Ti as continuous, and learn decision tree Di.

end for

Testing Phase
For a given data point x
for i=1...M do

Convert x(categorical) to x′(integer valued) using the ordinality (Oi) of tree Di.
Get the prediction for x′ from tree Di.

end for
Combine the predictions of M decision trees by the chosen combination rule to get
the final classification result.

Figure 6.2: Algorithm for Random Ordinality Ensembles(ROE).

6.3. EMPIRICAL EVALUATION OF RO: TREES AND ENSEMBLES 127

6.3 Empirical Evaluation of RO: Trees and Ensembles

We carried out experiments to study Random Ordinality trees and Random Ordinal-
ity ensembles. We note that the principle of RO can be applied to just a single tree,
avoiding multi-way split, or it can be applied as an ensemble technique.

In the first part of the experiments, we studied the performance of a single decision
tree based on RO. Next, a study was carried out to compare the performance of ROE
with Bagging [11], AdaBoost.M1 [41] and Random Forests [13].

6.3.1 Experiments with a Single RO Tree

In the first part of the experiments, we compared the classification error of a decision
tree trained on the original data (with multi-way split) and a decision tree created using
generated by RO method.

Experimental datasets are taken from UCI repository. The information about these
datasets is given in Table A.1. As RO works only for categorical datasets, we selected

pure categorical datasets only. We used J48 (the Weka [96] implementation of C4.5,
with the unpruned option), which has multi-way splits for multi-valued categorical
attributes as the default. Following the methodology proposed by Dietterich [28], we
performed five replications of a two-fold cross-validation. In each replication, the
dataset was divided into two random equal-sized sets. Each learning algorithm was
trained on one set at a time and its error was estimated on the other set. The RO process
is random, hence with different RO, we get different trees. To take into account this
randomness of RO into analysis, For every run, 100 trees were created, each created
by using with a different RO transformation. A total of 1000 trees were created (10
runs × 100 trees in each run). The average testing errors on a 5 × 2 cross validation
of these decision trees are given in Table 6.4.

On 9/13 datasets, the average errors of the RO trees are lower than standard multi-
way decision trees trained on the original data (multi-way split).

6.3.2 Experiments with RO Ensembles

In this section, we present a comparative study of the performance of RO ensembles
against other popular ensemble methods.

We created two types of classifier ensembles by using ROE. In the first, we used the
unpruned J48 decision trees. In the second, we used Random Trees (RT) of WEKA,

128CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Dataset Decision tree (J48) with original Decision tree (J48) with
data, error in % in multi-way split RO attributes, error in %

Promoter 28.5 25.3
Hayes-Roth 25.3 21.7

Breast Cancer 35.9 33.4
Monks-1 15.9 26.1
Monks-2 49.6 32.3
Monks-3 0 0.1
Balance 31.4 26.6

Soyalarge 9.7 10.5
Tic-tac-toe 18.4 12.4

Car 9.2 6.5
DNA 8.9 8.5

Mushroom 0 0.2
Nursery 3.6 2.2

Table 6.4: Average classification error of single decision tree (J48) with original data
and single decision tree (J48) with RO attributes. On 9/13 datasets, the average errors
of the RO trees are lower than standard multi-way decision trees trained on the original
data (multi-way split).

Random Trees constructs a tree that considers K random attributes at each node. In
other words, we combine the attribute randomization of Random Subspaces with Ran-

dom Ordinality. We carried out experiments with Bagging and AdaBoost.M1 using J48
(unpruned) as the base model, and Random Forests. For Random Forests, the number
of attributes selected from the available attributes at each node is set at blog2 m + 1c
(default value), where m is the number of attributes in the dataset. The size of the
ensembles was set at 50 for these experiments. Following [54], K (the number of at-
tributes to randomly investigate) is taken as the half of the attributes for Random Sub-
spaces. Default settings were used for the rest of the parameters. In the experiments,
decision tree algorithms were untouched. As open source Weka software was used for
these experiments, these experiments can be easily duplicated. The experiments were
conducted following the 5 × 2 cross-validation [28] as discussed in Chapter 3.

Table 6.5 presents classification errors of different ensemble methods on different
datasets. It also presents the performance rank of various ensemble methods on dif-
ferent datasets. The average rank of ROE with RT is 1.8, whereas the average rank of
ROE with J48 is 2.8. These ranks are better than ranks of Bagging (3.8), AdaBoost.M1
(3.6) and Random Forests (3.3).

Table 6.6 presents the comparative study of the various popular ensemble methods

6.3. EMPIRICAL EVALUATION OF RO: TREES AND ENSEMBLES 129

Dataset ROE ROE Bagging AdaBoost.M1 Random Single
with J48 with RT Forests Tree (J48)

Promoter 13.1(2) 12.8(1) 15.5(4) 19.6(5) 13.4(3) 28.5(6)
Hayes-Roth 16.9(2) 15.9(1) 22.8(4) 23.1(5) 22.2(3) 25.3(6)

Breast Cancer 30.3(3) 30.1(2) 29.9(1) 35.6(5) 32.4(4) 35.9(6)
Monks1 18.3(5) 1.5(1) 5.8(3) 5.9(4) 3.3(2) 15.9(6)
Monks2 33.9(2) 30.9(1) 46.9(3) 47.5(4) 50.4(6) 49.6(5)
Monks3 0(3.5) 0(3.5) 0(3.5) 0(3.5) 0(3.5) 0(3.5)
Balance 19.6(1) 20.0(2) 29.6(4) 30.3(5) 26.9(3) 31.4(6)

Soyalarge 8.8(5) 7.3(1.5) 8.2(4) 7.3(1.5) 7.9(3) 9.7(6)
Tic-tac-toe 6.6(3) 3.4(1) 10.0(5) 3.5(2) 8.6(4) 18.4(6)

Car 4.1(1) 4.2(2) 8.3(4.5) 5.9(3) 8.3(4.5) 9.2(6)
DNA 4.5(2) 4.4(1) 6.2(5) 5.1(3) 5.8(4) 8.9(6)

Mushroom 0.1(5.5) 0.1(5.5) 0(2.5) 0(2.5) 0(2.5) 00(2.5)
Nursery 1.0(2) 0.9(1) 2.8(5) 1.3(3) 2.6(4) 3.6(6)

Average Rank 2.8 1.8 3.8 3.6 3.3 5.5

Table 6.5: Classification error in % for different ensembles (rank on the basis of aver-
age classification accuracy is given in brackets), bold numbers show best performance.
ROE ensembles generally perform similar to or better than other ensemble methods.

against ROE with J48 and ROE with RT. Results are presented as ROE with J48/ROE

with RT when results are different for these two ensembles. For example, in the Ran-
dom Forests column for Tic-tac-toe dataset, we have ∆/+, it means for Tic-tac-toe
dataset, ROE with J48 is similar to Random Forests, whereas ROE with RT is better
than Random Forests. When only one result is presented it means the comparative per-
formance of ROE with J48 and ROE with RT is similar. For example in the Bagging
column for Car dataset, we have +, it means for Car dataset both ROE with J48 and
ROE with RT are better than Bagging.

Results suggest that, with the exception of Monks1 dataset, the performance of
ROE with J48 is either statistically similar or better than other ensemble methods. The
performance of ROE with RT is either statistically similar or better than other ensemble
methods for all datasets.

For Monks1 dataset, ROE with J48 did not give good results, whereas for Tic-
tac-toe and Soyalarge datasets, when we combine RS with RO, we observed great
improvement in classification accuracy. We will now discuss these datasets in detail to
understand the limitations of ROE.

Monks1 dataset has six attributes and two classes. The classification is Y = 1, if
(x1 = x2) ∨ (x5 = 1). All the other data points belong to class 2. When we treat

130CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Dataset Bagging AdaBoost.M1 Random Single
Forests Tree

Promoter ∆ ∆ ∆ +
Hayes-Roth + + + +

Breast Cancer ∆ ∆ ∆ ∆
Monks1 -/∆ -/∆ -/∆ -/+
Monks2 + + + +
Monks3 ∆ ∆ ∆ ∆
Balance + + + +

Soyalarge ∆ ∆ ∆ ∆
Tic-tac-toe + ∆ ∆/+ +

Car + + + +
DNA + ∆ ∆ +

Mushroom ∆ ∆ ∆ ∆
Nursery + + + +

RO with J48
win/draw/lose 7/5/1 5/7/1 5/7/1 9/3/1
RO with RS

win/draw/lose 7/6/0 5/8/0 6/7/0 9/4/0

Table 6.6: Comparative Study of ROE with J48 and ROE with RT. Results are pre-
sented ROE with J48/ROE with RT. if performance of these ensembles are different.
‘+/-’ shows that performance of ROE is statistically better/worse than that algorithm
for that dataset, ‘∆’ shows that there is no statistically significant difference in per-
formance for this dataset between ROE and that algorithm. ROE ensembles generally
perform similar to or better than other ensemble methods.

data as continuous, the first concept (x1 = x2) is a diagonal concept. J48 trees are
restricted to orthogonal decision boundaries. In other words, decision trees divide
the input attribute space into rectangular regions whose sides are perpendicular to the
attribute axis. Decision trees have a representational problem because of the orthogonal
property- they have difficulty in learning a diagonal decision boundary. Ensembles of
decision trees solve this problem, as combined results of decision trees produce a good
approximation of a diagonal concept [29]. The quality of the approximation depends
on the diversity of decision trees in the ensemble. ROE with RT trees are more diverse
as compared to ROE with J48 trees. Hence, ROE with RT can learn this diagonal
decision boundary in Monks1 data better than ROE with J48.

Building a good ensemble depends on the creation of diverse decision trees. We
create diverse decision trees by imposing random ordinality to categorical attributes
values that in turn create different node splits. Diversity in node splits is the key for

6.4. STUDY OF RO ATTRIBUTES IN THE INFORMATION THEORETIC FRAMEWORK131

diverse decision trees. For an attribute, the possible number of different splits for the
attribute is given by Eq.(1). If |A| is small, there is a large possibility that different trees
have same node splits, and we may not get the very diverse trees. When an attribute
has only two values, imposing random ordinality is not useful as there is only one way
a node can split. Tic-Tac-Toe data has only 3 attribute values for each attribute hence
RO alone does not produce very diverse decision trees. Similarly Soyalarge dataset
has a large number of binary attributes which is unaffected by RO. Hence, RO trees
are not creating diverse trees for Soyalarge dataset. The small cardinality of attributes
is the reason for relatively large improvement when RO is combined with RS.

In summary, RO trees are generally better than multi-way split trees and RO en-
sembles are either statistically similar or better than other ensemble methods for all
datasets. To analyse RO attributes, in the next section, we carry out a theoretical study
of RO attributes on artificial datasets.

6.4 Study of RO attributes in the information theoretic
framework

In RO, new attributes are created by randomly assigning order to different attribute
values and treating these new attributes as continuous. The selected splitting criterion
is used to decide the best binary split. In this section, we will discuss whether these
attributes are good for classification using the information theoretic framework.

Let T be a 2 class (Y = +1 and Y = -1) dataset such that it has the same number
of positive and negative examples. Let A be a multi-valued attribute with cardinality
|A| again with uniform prior probability. Half of these values correctly identify the
positive class, whereas the rest of the values correctly identify the negative class. For
example, if attribute values are (a, b, c, d, e, f),

p(Y = +1|A = a) = 1. (6.1)

p(Y = +1|A = b) = 1. (6.2)

p(Y = +1|A = c) = 1. (6.3)

p(Y = −1|A = d) = 1. (6.4)

p(Y = −1|A = e) = 1. (6.5)

p(Y = −1|A = f) = 1. (6.6)

132CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Cardinality |A| Number of Average gain Average gain Gain ratio
of the random ratio for ratio for for

attribute A attributes RO attributes (s.d.) attributes with multi-way split
created random split (s.d.)

4 104 0.59(0.29) 0.37(0.26) 0.50
6 104 0.47(0.20) 0.20(0.24) 0.39
8 106 0.40(0.16) 0.13(0.18) 0.33

10 107 0.35(0.12) 0.10(0.14) 0.30
12 107 0.32(0.10) 0.08(0.11) 0.28
14 107 0.29(0.09) 0.06(0.09) 0.26

Table 6.7: Information gain ratio of attributes with different numbers of attribute val-
ues. RO attributes have better information gain ratio than multi-way splits.

We calculate the information gain ratio (discussed in Chapter 2) of different at-
tributes created by RO. We randomly assign order to (a, b, c, d, e, f) and calculate a
binary split at each point, the maximum information gain ratio is taken as the informa-
tion gain ratio associated with this random order. For example, if we assign

a < c < f < e < b < d. (6.7)

The maximum information gain ratio is based on the split ((a,c) (f,e,b,d)) and this
is taken as the information gain ratio associated with the random order presented in
Eq. 6.7.

We calculate the average information gain ratio of different possible random orders
of attribute values. We carry out this exercise for attributes with different cardinality,
whereas datasets and attribute values have same properties as discussed above.

We also calculate the information gain ratio of binary attributes created by random
splitting of attribute values into two groups. Results are presented in Table 6.7 and
Fig. 6.3. Results indicate that the average gain ratio of attribute created using RO
and the gain ratio of multi-valued attributes are quite similar, whereas random splits
do not create good attributes. As the number of attribute values increases, the average
information gain ratio of RO attributes decreases. The same is true for the multi-way
split as the value of the normalizing factor (log2 |A|) increases. This suggests that on
average we are creating continuous attributes from multi-valued categorical attributes
that have similar information gain ratio.

For the example data, using RO we get the best gain ratio, when all attributes

6.4. STUDY OF RO ATTRIBUTES IN THE INFORMATION THEORETIC FRAMEWORK133

4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Gain ratio vs Number of attribute values

Number of attribute values

G
ai

n
ra

tio

RO attributes
Random binary split
Multi−way split

Figure 6.3: Information gain ratio for RO attributes, Random Split and multi-way
splits. RO attributes have better information gain ratio than multi-way splits and ran-
dom splits.

values related with positive class are together, the same should be true with attributes
values related with negative class. We have |A| number of attribute values, half of
them are related with positive class, whereas the other half are related with negative

class. All attributes values
|A|
2

related with positive class will be either left or right of

the attributes values
|A|
2

related with negative class. The number of possible ways for

this kind of combination is 2(
|A|
2

)!(
|A|
2

)!. The total number of possible combinations
with |A| number of attribute values is |A|!. Hence, the probability to get attributes with

best gain ratio is 2
(|A|

2
)!(|A|

2
)!

|A|! , which decreases as |A| increases, this can be observed

in Fig. 6.3.

Fig. 6.4 shows the histogram of information gain ratio probability for RO attributes
generated from attributes with a different number of attribute values. We also plot
cumulative probability for the gain ratio. Fig. 6.5 shows the same for random splits.
The best possible cumulative probability is a delta function at gain ratio value 1. In
other words, a better cumulative probability curve takes higher values at higher values
of the gain ratio. The comparative study of RO attributes and random splits suggests
that RO attributes have better cumulative probability curve for gain ratio, for example
for an attribute with 10 values there is around 0.68 probability that the gain ratio is

134CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

more that 0.32, whereas for random splits that probability is around 0.10 (Fig. 6.6).
We have shown in this section that for multi-valued categorical attributes with certain
properties, the information gain ratio of a binary split with some random constraints
may be similar to a multi-way split.

As in real datasets, we have a large number of attributes, this helps us in selecting
better attributes. For example, if all attributes have similar properties, and the number
of attributes is m, we are taking the best of m selections of the population which has
average gain ratio similar to a multi-way split information gain ratio as at each level
a decision tree algorithm selects the best available attribute. In summary, there is a
reasonable probability that RO attributes are good for classification.

In the next section, we present the various studies to analyse RO trees and RO
ensembles.

6.5 Controlled Experiments

In this section, we study the performance of RO ensembles by varying the number
of attributes in the concepts, the attribute cardinality and the number of training data
points. We created four datasets for this purpose.

1. Categorical Multiplexer - In Multiplexer, an instance is a series of bit of
length; a + 2a, where a is a positive integer. The first a bits represent an index
into the remaining bits and the level of the instance is the value of the indexed bit.
We created a variant of Multiplexer. This is referred to as Categorical Multiplexer.
In this dataset, attributes are categorical (can take more than 2 values and these
values are integers). To decide the concept, we converted the data into binary
data by using the following transformations,

even number = 0, odd number = 1. (6.8)

For example, for Categorical 11 − Multiplexer(a = 3), if we have the in-
stance, (2,1,6,5,3,5,7,8,5,6,3), by using the above transformation, the instance
is converted to the following binary instance to compute the concept,

(0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1). (6.9)

6.5. CONTROLLED EXPERIMENTS 135

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 4

Gain Ratio

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Gain Ratio

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

An attribute with cardinality 4

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 8

Gain Ratio

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 8

Gain Ratio

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 12

Gain Ratio

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 12

Gain Ratio

C
um

ul
at

iv
e

P
ro

ba
bb

ili
ty

Figure 6.4: Information gain ratio for attributes created by using the RO method, for
attributes with different cardinalities. Left column - probability vs gain ratio, right
column - cumulative probability vs information gain ratio. Small cumulative proba-
bility at low information gain ratio suggests that splits for RO attributes are good for
classification.

136CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5
An attribute with cardinality 4

Gain Ratio

C
om

ul
at

iv
e

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 4

Gain Ratio

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 8

Gain Ratio

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 8

Gain Ratio

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 12

Gain Ratio

P
ro

ba
bi

lit
y

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 12

Gain Ratio

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 6.5: Information gain ratio for attributes created using random splits, for at-
tributes with different cardinalities. Left column - probability vs information gain ra-
tio, right column - cumulative probability vs information gain ratio. Large cumulative
probability at low information gain ratio suggests that these random splits are not as
good as splits created for RO attributes for classification.

6.5. CONTROLLED EXPERIMENTS 137

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 12

Gain Ratio

C
um

ul
at

iv
e

P
ro

ba
bb

ili
ty

0 0.2 0.4 0.6 0.8 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1
An attribute with cardinality 12

Gain Ratio

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Figure 6.6: Cumulative probability for information gain ratio for an attribute of cardi-
nality 12 (Left- RO attribute, Right - Random split). Smaller cumulative probability at
low information gain ratio suggests that splits created for RO attributes are better for
classification.

First three attributes, from the right, decide the index into the remaining bits,
which is 5 (1×4 + 1×1), so the concept is 0; the value of 6th remaining bits (as
the starting point is 0, 9th bit from the right).

The integer valued data is created randomly and the above procedure is used
to compute the concepts. As the data is integer valued, it is treated as multi-
valued categorical data. The number of integers is varied in every attribute,
in other words, the cardinality of attributes is varied. All attributes have the
same cardinality. Two types of datasets with a different numbers of attribute
cardinalities (6 and 10) are created. We carry out experiments with

• Categorical 11−Multiplexer(a = 3) and

• Categorical 20−Multiplexer(a = 4).

This problem is different with normal multiplexer task as with a higher cardinal-
ity, the complexity of the problem increases due to more number of concepts.

2. Odd Even Data This is an integer valued data that is treated as multi-valued
categorical data. It has the following 3 concepts,

• A = (All attribute values are even) or (All attribute values are odd)

• B = ((First half of the attributes are even) and (Next half of the attributes
are odd)) or ((First half of the attributes are odd) and (Next half of the
attributes are even))

• C = ∼(A or B)

138CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Integer valued data points are created randomly and treated as multi-valued cate-
gorical data. Two types of datasets are created, one with 4 attributes and the other
with 8 attributes. Data points are created such that there is almost equal repre-
sentation of each class. We have 2 variants of each dataset with different attribute
cardinalities (6 and 10). The dataset with 4 attributes and each attribute cardi-
nality 6 is referred as Odd Even 4 6, the dataset with 4 attributes and each at-
tribute cardinality 10 is referred as Odd Even 4 10, the dataset with 8 attributes
and each attribute cardinality 6 is referred as Odd Even 8 6 whereas the dataset
with 8 attributes and each attribute cardinality 6 is referred as Odd Even 8 10.

6.5.1 Discussion

The experiments are conducted following the 5 × 2 cross-validation [28] (discussed
in experiment section). Experiments are carried out with different sizes of training
data/testing; 1000/1000 data points and 4000/4000 data points.

For all kinds of datasets, RO ensembles performed statistically similar to or bet-
ter than other ensemble methods (Table 6.8 to Table 6.15). On the basis of a sin-
gle decision tree classification error (Table 6.8 to Table 6.15), one can conclude that
Odd Even Data with 4 attributes has simplest concepts followed by Odd Even Data

with 8 attributes. Categorical 11−Multiplexer and Categorical 20−Multiplexer

datasets have difficult concepts. The number of attributes needed to define the concepts
is the possible reason for these characteristics; if a concept is defined by a large number
of attributes, it is difficult to learn this concept.

The variants of datasets with higher number attribute cardinality are more difficult
to learn as they have more concepts (as compared to the variant of dataset with a lower
attribute cardinality) and because of the larger attribute cardinality they are affected
more by the data fragmentation problem.

Two kinds of behaviour are observed, for the simpler datasets (Odd Even Data),
with 1000 data points in the training datasets, there was a large difference between
classification errors of RO ensembles (Table 6.8 to Table 6.11) and the other popular
ensembles (results are in favour of RO ensembles), however as the size of the training
dataset is increased from 1000 to 4000, the relative advantage of RO ensembles de-
creases (Table 6.8 to Table 6.11). One of the possible reasons is that a large number of
data points reduces the data fragmentation problem, hence improves the performance
of ensembles of decision trees with multi-splits.

For datasets (Categorical 11−Multiplexer and Categorical 20−Multiplexer

6.6. ANALYSIS 139

No. of training/ ROE ROE Bagging AdaBoost.M1 Random Single
testing points with J48 with RT Forests Tree

1000/1000 0.43 0.34 8.87(+) 4.27(+) 7.33(+) 10.93(+)
4000/4000 0.01 0 2.78(+) 3.25(+) 1.34(+) 3.75(+)

Table 6.8: Testing error in % (bold numbers indicate the best performance) for
Odd Even Data 4 6 dataset, ‘+’ suggests that RO ensembles are statistically better
than that ensemble method.

No. of training/ ROE ROE Bagging AdaBoost.M1 Random Single
testing points with J48 with RT Forests Tree

1000/1000 6.57 3.87 20.12(+) 13.40(+) 18.96(+) 28.30(+)
4000/4000 0.20 0.02 8.50(+) 4.23(+) 7.17(+) 12.88(+)

Table 6.9: Testing error in % (bold numbers indicate the best performance) for
Odd Even Data 4 10, ‘+’ suggests that RO ensembles are statistically better than
that ensemble method.

datasets) with relatively difficult concepts, the opposite behaviour is observed. RO
ensembles are statistically similar to other ensembles of decision trees with multi-splits
for 1000 training data points (Table 6.12 to Table 6.15). However, as the number of
training data points is increased from 1000 to 4000, the improvement in RO ensembles
(except Categorical 20 − Multiplexer dataset with the attribute cardinality 10) is
greater than the other ensemble methods. As these datasets have difficult concepts,
1000 data points are not enough for the learning, however with 4000 training data
points RO ensembles learn these concepts better than other ensemble methods.

We showed in this section by varying the number of attribute in the concepts, the
cardinality of attributes and the number of training data points that the RO ensembles
are statistically similar to or better than other ensemble methods that show the effec-
tiveness of the ROE method. To analyse the reasons for the success of ROE, we focus
on two factors; robustness of ROE for data fragmentation problem and error-diversity
patterns of ROE.

6.6 Analysis

In the previous sections, we compared the performance of ROE approach with other
popular ensemble methods. In this section, we present the following studies to under-
stand the behaviour of RO ensembles;

140CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

No. of training/ ROE ROE Bagging AdaBoost.M1 Random Single
testing points with J48 with RT Forests Tree

1000/1000 1.64 1.56 10.06(+) 4.61(+) 8.13(+) 18.26(+)
4000/4000 0.19 0.05 4.68(+) 2.33(+) 3.44(+) 10.70(+)

Table 6.10: Testing error in % (bold numbers indicate the best performance) for
Odd Even Data 8 6, ‘+’ suggests that RO ensembles are statistically better than that
ensemble method.

No. of training/ ROE ROE Bagging AdaBoost.M1 Random Single
testing points with J48 with RT Forests Tree

1000/1000 4.68 5.42 21.50(+) 12.30(+) 19.45(+) 33.05(+)
4000/4000 1.30 1.68 10.24(+) 4.24(+) 7.97(+) 20.98(+)

Table 6.11: Testing error in % (bold numbers indicate the best performance) for
Odd Even Data 8 10, ‘+’ suggests that RO ensembles are statistically better than
that ensemble method.

No. of training/ ROE ROE Bagging AdaBoost.M1 Random Single
testing points with J48 with RT Forests Tree

1000/1000 30.66 30.58 37.97(+) 33.81 34.90 43.83(+)
4000/4000 8.21 13.39 31.15(+) 26.49(+) 29.59(+) 40.48

Table 6.12: Testing error in % (bold numbers indicate the best performance) for
Categorical 11 − Multiplexer, the attribute cardinality is 6, ‘+’ suggests that RO
ensembles are statistically better than that ensemble method.

No. of training/ ROE ROE Bagging AdaBoost.M1 Random Single
testing points with J48 with RT Forests Tree

1000/1000 40.25 39.86 42.76 41.85 41.15 45.95(+)
4000/4000 28.88 30.17 38.42(+) 35.98(+) 36.09(+) 44.45(+)

Table 6.13: Testing error in % (bold numbers indicate the best performance) for
Categorical 11 − Multiplexer, the attribute cardinality is 10, ‘+’ suggests that RO
ensembles are statistically better than that ensemble method.

6.7. ANALYSIS OF RO ENSEMBLES 141

No. of training/ ROE ROE Bagging AdaBoost.M1 Random Single
testing points with J48 with RT Forest Tree

1000/1000 43.08 44.55 45.69 44.88 44.53 48.39(+)
4000/4000 39.05 39.28 44.16(+) 44.16(+) 43.38(+) 48.03(+)

Table 6.14: Testing error in % (bold numbers indicate the best performance) for
Categorical 20 − Multiplexer, the attribute cardinality is 6, ‘+’ suggests that RO
ensembles are statistically better than that ensemble method.

No. of training/ ROE ROE Bagging AdaBoost.M1 Random Single
testing points with J48 with RT Forests Tree

1000/1000 45.42 44.88 45.86 46.40 45.38 49.67(+)
4000/4000 44.15 44.07 46.25 45.68 45.27 48.7(+)

Table 6.15: Testing error in % (bold numbers indicate the best performance) for
Categorical 20 − Multiplexer, the attribute cardinality is 10, ‘+’ suggests that RO
ensembles are statistically better than that ensemble method.

6.7 Analysis of RO Ensembles

In the previous sections, we compared the performance of ROE approach with other
popular ensemble methods. In this section, we present the following studies to under-
stand the behaviour of RO ensembles;

The Effect of the Data Fragmentation One of the motivations for ROE is to build
binary decision trees so that they may not suffer from data fragmentation prob-
lem. If the dataset has attributes with large number of values, the performance of
decision trees may be affected because of the data fragmentation problem. We
carried out a control experiment to study RO ensembles by varying the number
of attribute values.

RO Tree Sizes We carried out a study to analyse the RO trees sizes and their advan-
tages for creating more reliable rules.

The Diversity - Accuracy Trade Off A good combination of diversity and accuracy
is required for better performance of an ensemble. To understand the behaviour
of RO ensembles, we studied diversity-accuracy patterns using kappa-error plots.

142CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

The Effect of the Ensemble Size We discussed the effect of the size of RO ensembles
on RO ensembles accuracy. We also analysed RO ensembles using the theoreti-
cal framework proposed by Fumera et al. [42].

Combinations of RO with the Other Ensemble Methods We studied how Bagging
and AdaBoost.M1 are affected by RO.

6.7.1 The Effect of the Data Fragmentation

Data fragmentation may affect the performance of decision trees. We have carried out
a controlled experiment to see how different ensemble methods perform with respect
to the cardinality of the attribute. For this purpose, we selected two pure continuous
datasets; Vehicle and Segment. Vehicle data has 846 data points described by 18 con-
tinuous attributes. These data points are distributed into 4 classes. Segment dataset
has 2310 data points. These data points are described by 19 continuous attributes and
divided into 7 classes. We converted these datasets into categorical datasets using
equal width discretization. We studied various ensemble methods on these discretized
datasets; varying the numbers of bins to see its effect on different ensemble methods.
We performed five replications of a two-fold cross-validation. The size of the ensem-
bles was 50. The results (Fig. 6.7 - Fig. 6.8) suggest that classification errors of RO
ensembles are relatively unaffected. When we increase the number of bins we have
a small number of points in every bin; that leads to badly estimated probabilities and
poor generalization. As ROE consists of binary decision trees so it is more robust to
the data fragmentation problem.

6.7.2 RO Tree Sizes

In the previous sections, we have argued that RO trees avoid multi-split. As RO trees
having binary splits RO trees are more likely to have smaller sizes than that of multi-
split decision trees [35]. Smaller trees have greater statistical evidence at the leaves.
We studied RO tree sizes for various datasets. The experiments were conducted fol-
lowing the 5 × 2 cross-validation and 50 RO trees are created in each run.

In the Table 6.16, we have presented the average sizes of RO trees (J48 decision
trees created using datasets generated by the RO method) and normal multi-split J48
decision trees for different datasets. For all the datasets, RO trees are smaller that
normal multi-split J48 decision trees. For example, for DNA dataset, the average size

6.7. ANALYSIS OF RO ENSEMBLES 143

5 10 15 20 25 30 35 40 45
28

30

32

34

36

38

40

42

Number of Equal Width Bins

C
la

ss
ifi

ca
tio

n
er

ro
r

in
 %

Vehicle

ROE with J48
ROE with RS
Bagging
AdaBoostM1
Random Forest
J48 Decision Tree

Figure 6.7: The effect of equal width discretization on various ensemble methods for
the Vehicle dataset. RO ensembles are quite robust to data fragmentation.

5 10 15 20 25 30 35 40 45
4

5

6

7

8

9

10

11

12

13

Number of equal width bins

C
la

ss
ifi

ca
tio

n
er

ro
r

in
 %

Segment

ROE with J48
ROE with RS
Bagging
AdaBoostM1
Random Forest
J48 Decision Tree

Figure 6.8: The effect of equal width discretization on various ensemble methods for
the Segment dataset. RO ensembles are quite robust to data fragmentation.

144CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Name of Size of The average The average
dataset the training number of leaves/size of number of leaves/size of

data RO trees (J48) multi-split J48 trees
Car 864 54/107 127/174

DNA 1587 151/76 281/211
Tic-Tac-Toe 479 97/49 142/92

Promoter 53 6/11 13/17

Table 6.16: The average sizes of RO trees and multi-split J48 trees for different
datasets. RO trees are smaller than multi-way trees.

of RO trees is 151 whereas the average size of normal multi-split J48 decision trees is
281. These results indicate that RO helps in creating smaller decision trees.

6.7.3 The Diversity - Accuracy Trade Off

As discussed in chapter 4, Kappa-error plots [72] are a method to understand the
diversity-error behaviour of an ensemble (for detail see Appendix). We draw kappa-
error plots of our proposed ensemble methods (Fig. 6.9) for four datasets (Car, DNA,
Promoter, Tic-Tac-Toe). For comparison, we also draw kappa error plots for Bagging
method for these datasets. The scales of κ and Ei,j are same for each given dataset
so we can easily compare different ensemble methods. As expected, ROE with J48
is less diverse as compared to ROE with RT (selection of attribute out of K randomly
selected attributes increases the diversity). The diversity of ROE with J48 is less than
the diversity of Bagging (except for DNA dataset). However, RO with J48 trees are
generally more accurate than ROE with RT trees and trees created using Bagging. This
is the reason for better performance of ROE with J48. ROE with RT and Bagging have
similar diversity behaviour whereas ROE with RT trees are generally more accurate.

Kappa-error plots suggest that with ROE method, we are able to produce accurate
classifiers. This is the reason for the better performance of ROE method. In other
words, ROE is able to create accurate classifiers with reasonable diversity.

Results in section 4 and in this section suggest that RO trees are quite accurate.
There may be two reasons for this behaviour of RO trees. As we have discussed, these
classifiers are quite robust to the data fragmentation problem. This may be one of
the reasons for the RO trees good accuracy. In the tree growing phase, we calculate
the information gain ratio of all available attributes at each level. The reliability of
these calculations depends on the number of data points presents at the nodes (when

6.7. ANALYSIS OF RO ENSEMBLES 145

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Kappa

E
rr

or

(a) Car (ROE with J48)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Kappa

 E
rr

or

(b) Car (ROE with RT)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Kappa

 E
rr

or

(c) Car (Bagging)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

Kappa

E
rr

or

(d) DNA (ROE with J48)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

 E
rr

or

Kappa

(e) DNA (ROE with RT)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

Kappa

E
rr

or

(f) DNA (Bagging)

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Kappa

 E
rr

or

(g) Promoter (ROE with J48)

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Kappa

 E
rr

or

(h) Promoter (ROE with RT)

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Kappa

 E
rr

or

(i) Promoter (Bagging)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Kappa

E
rr

or

(j) Tic-Tac-Toe (ROE with
J48)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Kappa

 E
rr

or

(k) Tic-Tac-Toe (ROE with
RT)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Kappa

E
rr

or

(l) Tic-Tac-Toe (Bagging)

Figure 6.9: Kappa-error diagrams for three ensemble methods, Left column- ROE with
J48, middle column - ROE with RT, right column - Bagging. x-axis - Kappa, y-axis -
the average error of the pair of classifiers. Axes scales are constant for various ensem-
ble methods for a particular dataset (each row). Lower κ represents higher diversity.
RO ensembles have accurate classifiers with reasonable diversity.

146CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

smaller nodes are split, the measure of information gain is more unreliable). We do
the comparative study of number of data points available in nodes at different depths
of binary split trees and multi-split trees.

If we assume that data points are equally divided in the nodes, for a decision tree

having |A| splits at each node, at depth ϑx, the number of points at each node is N(ϑx),

N(ϑ|A|) =
n

|A|ϑ|A| , (6.10)

where n is the total number of points. and |A|ϑ|A| is the number of nodes at depth
ϑx.

For decision tree having binary splits at each node, at the depth ϑ2, the number of
points at each node is N(ϑ2),

N(ϑ2) =
n

2ϑ2
, (6.11)

where 2ϑ2 is the number of nodes at depth ϑ2.

We show in Fig. 6.10 how the data points are split in nodes at different depths
of the trees. If each node presents at depth ϑ|A| of decision tree having |A| splits at
each node has the same number of points as the each node present at the depth ϑ2 of
decision tree having binary split

(N(ϑ2)= N(ϑ|A|)), using Eq. 9 and 10.

|A|ϑ|A| = 2ϑ2 . (6.12)

ϑ2 = ϑ|A| log2 |A|. (6.13)

ϑ2

ϑ|A|
= log2 |A|. (6.14)

We have presented depth ratio
ϑ2

ϑ|A|
(for the same number of data points in the

nodes, N(ϑ2)= N(ϑ|A|)) for different number of splits in Fig. 6.11.

Hence, if we assume that data points are equally divided in the nodes, in a binary

6.7. ANALYSIS OF RO ENSEMBLES 147

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Depth of the decision tree

P
ar

t o
f t

he
 d

at
a

po
in

ts
 a

va
ila

bl
e

at
 e

ac
h

no
de

Part of the data points available at each node at different depth

Tree with binary split
Tree with 6 splits at each node
Tree with 10 splits at each node

Figure 6.10: Part of the dataset available at each node for different depth, for decision
trees with different number of splits at each node.

tree, the number of points at each node present at depth ϑ2 is the same as the number of

points at each node present at depth
ϑ2

log2 |A|
for the decision tree having |A| splits at

each node. This suggests that in a binary tree, a more reliable decision can be made at
lower levels. As the classification rules that we get from the decision tree are the paths
from root to leaves of the decision tree, we may get more reliable rules with binary
split decision trees.

The second reason, we believe is related with generation of new attributes. RO
creates new attributes by imposing random ordinality. In other words, we are creating
a numerical representation of attribute values. In real life datasets, we have many
attributes, for every attribute RO creates a numerical representation. As we have large
numbers of attributes, there is a high probability that some of the randomly generated
numerical representations are good for classification (as discussed in section 5). This
way we expect good decision trees.

6.7.4 The Effect of the Ensemble Size

We studied the effect of ensemble size on ensemble errors for these four datasets (Car,
DNA, Promoter, Tic-Tac-Toe). The results are given in Fig. 6.12 and Fig. 6.12. For
comparison the classification errors with Bagging and AdaBoost.M1 are also presented
(we did not present results of Random Forests for better visualization as the error of
Random Forests consisting of a single classifier is quite large). ROE with J48 achieves

148CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

4 5 6 7 8 9 10 11 12 13 14
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
Tree depth ratio for nodes having same number of data points

Number of branches per node

D
ep

th
 r

at
io

Figure 6.11: Tree depth ratio (
ϑ2

ϑ|A|
) for different number of splits (|A|) such that

N(ϑ|A|) = N(ϑ2) where N(ϑ|A|) is the number of points at each node at depth ϑk, for
trees having |A| splits at each node.

its maximum performance with a small number of classifiers (around 10), which is a
characteristic of an ensemble having accurate but not very diverse classifiers.

As discussed in Chapter 2, Fumera et al. [42] suggest an analytic relationship
between the expected misclassification probability of the ensemble and the expected
misclassification probability of an individual classifier, as a function of the ensemble
size. Their theoretical results show that the expected misclassification probabilities
of Bagging [11] has the bias component as the bias component of the base model,
whereas the variance component is reduced by a factor M .

E = E(B) +
E(V)

M
, (6.15)

where,

• E is the classification error of ensemble

• E(B) corresponds to the sum of the Bayes error and of the bias component of
the error,

• E(V) is the variance part of the error.

We study RO ensembles by using the analytical relationship suggested by Fumera
et al. [42] to study its applicability for RO ensembles. To compute the values of EB

6.7. ANALYSIS OF RO ENSEMBLES 149

Figure 6.12: Classification error (with 95% confidence interval) of various ensemble
methods vs size of the ensemble for different datasets.

150CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Figure 6.13: Classification error (with 95% confidence interval) of various ensemble
methods vs size of the ensemble for different datasets.

6.7. ANALYSIS OF RO ENSEMBLES 151

Figure 6.14: Classification error (with 95% confidence interval) of RO ensembles (top
fig. ROE with J48 and bottom fig. ROE with RT, solid line) for the Car dataset with
expected classification error (dotted line) using Fumera et al. [42] framework. The
Y-axis of the graph represents testing error in % of the ensemble, and the X- axis
represents the number of classifiers in the ensemble.

152CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Figure 6.15: Classification error (with 95% confidence interval) of RO ensembles (top
fig. ROE with J48 and bottom fig. ROE with RT, solid line) for the DNA dataset
with expected classification error (dotted line) using Fumera et al. [42] framework.
The Y-axis of the graph represents testing error in % of the ensemble, and the X- axis
represents the number of classifiers in the ensemble.

6.7. ANALYSIS OF RO ENSEMBLES 153

Figure 6.16: Classification error (with 95% confidence interval) of RO ensembles (top
fig. ROE with J48 and bottom fig. ROE with RT, solid line) for the Promoter dataset
with expected classification error (dotted line) using Fumera et al. [42] framework.
The Y-axis of the graph represents testing error in % of the ensemble, and the X- axis
represents the number of classifiers in the ensemble.

154CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Figure 6.17: Classification error (with 95% confidence interval) of RO ensembles (top
fig. ROE with J48 and bottom fig. ROE with RT, solid line) for the Tic-tac-toe dataset
with expected classification error (dotted line) using Fumera et al. [42] framework.
The Y-axis of the graph represents testing error in % of the ensemble, and the X- axis
represents the number of classifiers in the ensemble.

6.7. ANALYSIS OF RO ENSEMBLES 155

and EV , we need experiment values of E(M) (classification error of the ensemble of
size M) at two different values of M . Once, we know the values of EB and EV , we
can predict the expected performance of ensembles of different sizes without doing
any experiment. We used the experimental values of E(1) and E(100) to compute the
values of EB and EV .

Fig. 6.14, Fig. 6.15, Fig. 6.16 and Fig. 6.17 show the experimental error of the
RO with J48 ensembles for different ensemble sizes. We have also provided the errors
calculated using the Fumera et al. analytical relationship [42]. This model fits well
with experimental data for all the datasets. We carried out the same exercise for the RO
with RS ensembles. The results are presented in Fig. 6.14, Fig. 6.15, Fig. 6.16 and Fig.
6.17 show the experimental error of the RO with J48 ensembles for different ensemble
sizes.. For Car and DNA datasets, this model predicts correctly the performance of
ensembles. For Promoter and Tic-Tac-Toe, empirical errors of smaller size ensembles
are slightly more than the predicted errors. However, for rest of the plots, it fits well
with the experiment values. It suggests that theoretical framework proposed by Fumera
et al. [42] is a useful tool for choosing the size of the RO ensembles.

6.7.5 Combinations of RO with the Other Ensemble Methods

We study how two popular ensemble methods, Bagging and AdaBoost.M1 get affected
by RO. We follow the same strategy as discussed in chapter 5 to combine RO with
Bagging and AdaBoost.M1. We created 100 trees with the original data using Bagging
process. In the second process we created 10 different datasets using RO and 10 trees
using Bagging are created for each dataset. Hence in both cases 100 trees are trained.
However in the second process diversity of RO has been combined with the Bagging.
The same procedure was followed with AdaBoost.M1. Experiments were carried out
with the same 5x2 cross validations methodology as suggested in section 3.2.2. Results
suggest (Table 6.17 and Table 6.18) that Bagging and AdaBoost.M1 both have similar
or better performances (except Monks 1 where Bagging has better performance) with
RO. This indicates that RO can be combined with other ensemble methods.

We summarize RO ensembles as follows;

1. RO trees are generally more accurate as compared to normal decision trees.

2. RO ensembles reduce the data fragmentation problem, and provide performance
improvements over several standard ensemble methods.

156CHAPTER 6. A NOVEL ENSEMBLE METHOD TO REDUCE THE DATA FRAGMENTATION PROBLEM

Dataset Bagging + RO Bagging
Promoter 15.9 16.8

Hayes-Roth 20.1 25.2 (+)
Breast Cancer 30.4 31.4

Monks1 9.6 3.9 (-)
Monks2 30.7 45.5 (+)
Monks3 0 0
Balance 18.3 28.1 (+)

Soyalarge 7.9 8.1
Tic-tac-toe 4.9 10.3 (+)

Car 4.4 8.3 (+)
DNA 5.1 6.0 (+)

Mushroom 0 0
Nursery 1.2 2.7 (+)

win/draw/lose 7/5/1

Table 6.17: Comparative Study of Bagging against RO + Bagging. ‘+/-’ shows that per-
formance of RO + Bagging is statistically better/worse than Bagging for that dataset.
Results suggest that RO can be combined with Bagging to improve the performance of
Bagging.

Dataset AdaBoost.M1 + RO AdaBoost.M1
Promoter 13.7 14.2

Hayes-Roth 18.6 23.4 (+)
Breast Cancer 32.4 35.6

Monks1 3.8 3.2
Monks2 30.7 45.5 (+)
Monks3 0 0
Balance 21.3 29.4 (+)

Soyalarge 7.7 7.8
Tic-tac-toe 1.8 2.3

Car 3.2 5.8 (+)
DNA 4.8 4.9

Mushroom 0 0
Nursery 0.6 1.0 (+)

win/draw/lose 6/7/0

Table 6.18: Comparative Study of AdaBoost.M1 against RO + AdaBoost.M1. ‘+/-
’ shows that performance of RO + AdaBoost.M1 is statistically better/worse than
AdaBoost.M1 for that dataset. Results suggest that RO can be combined with Ad-
aBoost.M1 to improve the performance of AdaBoost.M1.

6.8. CONCLUSION 157

3. Kappa-diversity plots suggest that RO ensembles have accurate classifiers with
reasonable diversity.

4. RO trees are smaller than normal multi-split decision trees.

5. We can predict the performance of RO ensembles using the theoretical formalism
for ensembles proposed by Fumera et al. [42].

6. This suggests that if we have to create an ensemble with only a small number
of classifiers RO with J48 is more useful. For an ensemble with a large number
of classifiers, RO with attribute randomization of Random Subspaces is a better
choice.

7. ROE is easy to implement. Parallel implementation of RO ensembles is also
possible.

6.8 Conclusion

In this chapter, we presented a data transformation scheme, random ordinality (RO),
that projects multi-valued categorical data to a continuous space. The motivation for
this approach is that categorical attribute values have no intrinsic order, hence, random
order can be imposed on these vales. This technique is used to create diverse binary
decision trees. Decision tree ensembles created by using RO are quite robust to the
data fragmentation problem. The information theoretic framework suggest that RO
attributes are good for classification. The comparative study of RO ensembles against
other popular ensemble methods show the effectiveness of this approach.

Chapter 7

Conclusion and Future work

7.1 Contributions of the Thesis

Our main contribution in this thesis is to study and develop various data transforma-

tion techniques that can be used to create classifiers ensembles. These data transfor-
mation techniques can be combined with the existing ensemble techniques to improve
them. We also showed that random linear oracle ensemble [68] technique can be stud-
ied using random projections. We summarize our contributions in the following points.

• Linear multivariate decision trees have better representational power than uni-
variate decision trees, however, it is computationally expensive to create linear
multivariate decision trees. We presented a computationally efficient technique
to create ensembles of linear multivariate decision trees. This technique uses
random projections. We then showed that this technique is a generalization of
the random linear oracle framework [68] that is proposed to improve the perfor-
mance of various ensemble methods. We presented the experimental results that
indicate that the improvement in Bagging by using the proposed method is more
than that achieved by using the random linear oracle framework.

• We showed that the discretization technique can be used to create ensembles.
We proposed a novel disretization technique, Random Discretization (RD), to
produce diverse discretized training datasets from a given continuous dataset. It
creates random discretization boundaries. We then showed that RD ensembles
have good representational power and can approximate any decision surface.
We studied the performance of RD ensembles against other popular ensemble
techniques. Results suggest that performance of RD ensembles is better than

158

7.1. CONTRIBUTIONS OF THE THESIS 159

Bagging and Random Forests and comparable with AdaBoost.M1. Experiments
on the noisy data, suggest that the performance of RD ensembles is quite robust
to the class noise.

• We showed how the proposed method to create linear multivariate decision trees
can be employed to improve the performance of RD ensembles. Extensive ex-
perimental studies were carried out to show that the proposed ensemble method,
Random Projection Random Discretization Ensembles (RPRDE), performs sim-
ilar to or better than other ensemble methods. However, its competitive advan-
tage is more for smaller ensembles. Experiments with the noisy data suggest
that RPRDE is quite robust to the class noise. We also showed that RPRD can
be combined with the other ensemble methods to improve them.

• We proposed a novel data transformation scheme, Random Ordinality (RO), for
multi-valued categorical datasets. This technique is based on the data manip-
ulation by imposing random ordinality on categorical attribute values. Trees,
created by using RO, are binary, therefore, they are less affected by the data
fragmentation problem. We further showed that RO ensembles reduce the data
fragmentation problem, and provide significantly improved accuracies over cur-
rent ensemble methods. We also showed that RO can be combined with the other
popular ensemble methods to improve these methods. We presented the theoret-
ical study of RO attributes to show that RO attributes are good for classification.

7.1.1 Conclusion

The learning of a classifier depends on the representations of datasets. If we know the
properties of a classifier, we may change the representations of datasets such that the
learning avoids the weaknesses of the classifier. Different data transformation schemes
like discretization, PCA and random projections etc. are quite popular in the machine
learning field for various reasons. Decision trees are very popular classifiers, however,
they have two major weaknesses; the representational power and the data fragmenta-
tion problem. Ensembles of decision trees are quite useful because they generally give
better accuracy than a single decision tree. The creation of diverse decision trees is
the key to the success of an ensemble. Different data representations of a problem can
be used to create diverse decision trees and can be combined to create ensembles. We
showed that random projections and the discretization process are useful for the repre-
sentational problem of decision trees. We also presented a novel data transformation

160 CHAPTER 7. CONCLUSION AND FUTURE WORK

scheme, Random Ordinalty, that is useful for the data fragmentation problem. All the
data transformation schemes that is studied or proposed in this thesis have random ele-
ments, in other words, these schemes are capable of producing diverse datasets. Hence,
these schemes are useful in creating decision tree ensembles.

In summary, we showed in the thesis that data transformation techniques can be
applied to generate ensembles of decision trees, and can be combined with existing
ensemble techniques to improve their performance.

7.2 Future Work

• In Random Ordinality (RO) ensembles, we imposed random ordinality to each
attribute independently. However, in future we will take into interdependencies
of attributes into consideration while imposing random ordinality. As RO is
based on data manipulation, experiments with other classifiers will also be one
of the directions of the future research. We used a simulated dataset with known
properties to study RO attributes by using the information theoretic framework.
In future, we will try to develop a general framework for all kinds of multi-valued
categorical datasets.

RO does not need the information about the complete dataset as it only needs the
information about the attribute values of the dataset. If we have the information
about the attribute values of the dataset, the RO process can create diverse online
decision trees. This will be an interesting future research field.

• For 5 out of 16 datasets, Random Discretization (RD) ensembles and Extreme
Random Discretization (ERD) ensembles are statistically different. This is quite
interesting as there is not much difference in the structure of a RD tree and
a ERD tree. This point needs further investigation as it shows that different
kinds of random discretization methods have different strengths. The study of
combination of RD trees and ERD trees could be one direction of the future
research. The study of ensembles of naive Bayes classifiers will be an interesting
exercise to attempt in future as the discretization is effective for naive Bayes
classifiers [97].

• ERD does not need the information about all the data points to create the bin
boundaries. If we know the range of different attributes, ERD can be used to

7.2. FUTURE WORK 161

create diverse online decision trees. ERD for online ensembles will be a re-
search direction. Discretization techniques [25, 70] are useful for time series
domains. In futures, we will employ the philosophy of the random dicretization
for creating ensembles for the classification of time series.

• Regression by classification [89] is an interesting idea, this is done by transform-
ing the range of continuous goal variable values into a set of intervals that will
be used as discrete classes. ERD can be used to create diverse datasets, that in
turn will create diverse classifiers. These will be used to create ensembles.

• RO ensembles work for multi-valued categorical datasets whereas RD ensembles
work for pure continuous datasets. Some datasets have both kinds of attributes
(multi-valued categorical attributes and continuous attributes), a combination of
the RO process and the RD process for these kinds of datasets will be one of the
future research work.

• In this thesis, we showed that Multi-RLE can be used to improve the perfor-
mance of Bagging. In future, we will study the effect of Multi-RLE on other
ensemble methods. As RLO improves the performance of different ensemble
methods, we expect that Multi-RLE should be useful in improving different en-
semble methods.

• In Random Projection Random Discretization (RPRDE), we use random projec-
tions to create new attributes. Different random matrices have been proposed to
create random projections. In this thesis, we carried out experiments with one
random matrix. Experiments with other random matrices [1] will be one of the
future research directions.

• In RPRDE, we use random projections to create new attributes. There can be
different methods to create these new attributes, for example kernel functions.
Kernel machines have been very popular because of their excellent representa-
tional power. Balcan and Blum [5, 6] propose kernel attributes and similarity
function attributes. The interesting point about these attributes is that the map-
ping, used to create these attributes, is random. In other words, this mapping
creates different attributes in different runs. These attributes may be used to
create ensembles. This will combine the ensemble philosophy with the kernel
machines. It will be interesting research field as it may combine the robustness
of ensemble methods with the representational power of kernel machines.

Appendix A

A.1 Datasets

Dataset No. of No. of No. of multi-valued No. of Binary
Name Data Points Classes attributes attributes

Promoter 106 2 57 -
Hayes-Roth 160 3 4 -

Breast Cancer 286 2 7 3
Monks-1 432 2 4 2
Monks-2 432 2 4 2
Monks-3 432 2 4 2
Balance 625 3 4 -

Soyalarge 683 19 19 16
Tic-tac-toe 958 2 9 -

Car 1728 4 6 -
DNA 3190 3 60 -

Mushroom 8124 2 18 4
Nursery 12960 2 7 1

Table A.1: Datasets used in experiments. All datasets are categorical.

A.2 The Kappa measure

The Kappa measure is defined as follows: let us consider a problem with K classes
with n data points, and let C be a K ×K matrix such that Cij contains the number of
instances assigned to class i by the first classifier and to class j by the second classifier.

162

A.2. THE KAPPA MEASURE 163

Dataset Size No. of No. of cont.
Name Classes attributes

Balance 625 3 4
Breast Cancer 699 2 9

Ecoli 336 8 7
Glass 215 7 9

Ionosphere 351 2 34
Letter 20000 26 16

Optical 5620 10 64
Pendigit 10992 10 16

Pima-diabetes 768 2 8
Phoneme 5404 2 5

RingNorm 7400 2 20
Satimage 6435 6 36
Segment 2310 7 19

Sonar 208 2 60
Spam 4601 2 57

TwoNorm 7400 2 20
Vehicle 846 4 18
Vowel 990 11 10

Waveform21 5000 3 21
Waveform40 5000 3 40

Yeast 1484 10 8

Table A.2: Datasets used in experiments. These datasets are pure continuous datasets.

164 APPENDIX A.

We define two quantities,

θ1 =

K∑
i=1

Cii

n
, (A.1)

θ2 =
K∑

i=1

{
K∑

j=1

Cij

n

K∑
j=1

Cji

n
}, (A.2)

where θ1 is the observed agreement between the classifiers and θ2 is ”agreement-
by-chance”.

The κ value is defined as

κ =
θ1 − θ2

1− θ2

. (A.3)

A.3 Results for RPRDE

In this section present a comparative study of RPRDE against the other popular en-
semble methods. We also present a comparative study on the noisy data.

A.3. RESULTS FOR RPRDE 165

Dataset Bagging AdaBoost.M1 MultiBoosting Random Single
Forests Tree

Balance + + + + +
Breast Cancer ∆ ∆ ∆ ∆ +

Ecoli ∆ ∆ ∆ ∆ ∆
Glass ∆ ∆ ∆ ∆ +
Iono ∆ ∆ ∆ ∆ +

Letter + ∆ + + +
Optical + ∆ ∆ ∆ +
Pendigit + + + + +
Pima-Dia ∆ ∆ ∆ ∆ ∆
Phoneme + ∆ ∆ ∆ +

RingNorm + + + + +
Satimage ∆ ∆ ∆ ∆ +
Segment + ∆ + + +

Sonar ∆ ∆ ∆ ∆ +
Spam ∆ ∆ ∆ ∆ +

TwoNorm + + + + +
Vehicle ∆ ∆ ∆ ∆ ∆
Vowel + + + + +

Waveform21 + + + + +
Waveform40 + + + + +

Yeast ∆ + ∆ ∆ +
win/draw/loss 11/10/0 8/13/0 9/12/0 9/12/0 18/3/0

Table A.3: Comparison Table - The ensembles size 10, ‘+’ shows that performance
of RPRDE is statistically better than that algorithm for that dataset, ‘-’ shows that
RPRDE is statistically worse for that dataset than this algorithm, ‘∆’ shows that there
is no statistically significant difference in performance for this dataset between RPRDE
and that algorithm.

166 APPENDIX A.

Dataset Bagging AdaBoost.M1 MultiBoosting Random Single
Forests Tree

Balance + + + + +
Breast Cancer ∆ ∆ ∆ ∆ +

Ecoli ∆ ∆ ∆ ∆ ∆
Glass ∆ ∆ ∆ ∆ +
Iono ∆ ∆ ∆ ∆ +

Letter + ∆ ∆ + +
Optical + - ∆ ∆ +
Pendigit + ∆ ∆ + +

Pima-Dia ∆ + ∆ ∆ ∆
Phoneme + ∆ ∆ ∆ +

RingNorm + + + + +
Satimage + ∆ ∆ ∆ +
Segment + ∆ ∆ ∆ +

Sonar ∆ ∆ ∆ ∆ +
Spam + ∆ - ∆ +

TwoNorm + + + + +
Vehicle ∆ ∆ ∆ ∆ ∆
Vowel + + + ∆ +

Waveform21 + + + ∆ +
Waveform40 + ∆ ∆ ∆ +

Yeast ∆ + + ∆ +
win/draw/loss 13/8/0 7/13/1 6/14/1 5/16/0 18/3/0

Table A.4: Comparison Table - The ensemble size 100, ‘+’ shows that performance of
RPRD is statistically better than that algorithm for that dataset, ‘-’ shows that RPRDE
is statistically worse for that dataset than this algorithm, ‘∆’ shows that there is no
statistically significant difference in performance for this dataset between RPRDE and
that algorithm.

A.3. RESULTS FOR RPRDE 167

Dataset Bagging AdaBoost.M1 MultiBoosting Random Single
Forests Tree

Balance + + + + +
Breast Cancer ∆ ∆ ∆ ∆ +

Ecoli ∆ + + + +
Glass ∆ ∆ ∆ ∆ +
Iono ∆ + + ∆ +

Letter + + + + +
Optical + + + + +
Pendigit + + + + +
Pima-Dia ∆ ∆ ∆ ∆ ∆
Phoneme + + + + +

RingNorm + + + + +
Satimage + + + ∆ +
Segment + + + + +

Sonar ∆ ∆ ∆ ∆ +
Spam - + ∆ ∆ +

TwoNorm + + + + +
Vehicle ∆ ∆ ∆ ∆ ∆
Vowel + + + + +

Waveform21 + + + + +
Waveform40 + + + + +

Yeast ∆ + + + +
win/draw/loss 12/8/1 16/5/0 15/6/0 13/8/0 19/2/0

Table A.5: Comparison Table - The ensembles size 10, ‘+’ shows that performance of
RPRD is statistically better than that algorithm for that dataset, ‘-’ shows that RPRD
is statistically worse for that dataset than this algorithm, ’∆’ shows that there is no
statistically significant difference in performance for this dataset between RPRD and
that algorithm. The class noise is 10%.

168 APPENDIX A.

Dataset Bagging AdaBoost.M1 MultiBoosting Random Single
Forests Tree

Balance + + + + +
Breast Cancer ∆ + ∆ ∆ +

Ecoli ∆ + + ∆ +
Glass ∆ ∆ ∆ ∆ +
Iono ∆ + + ∆ +

Letter + + + + +
Optical + ∆ ∆ ∆ +
Pendigit + + + + +

Pima-Dia ∆ ∆ ∆ ∆ ∆
Phoneme + + + + +

RingNorm + + + + +
Satimage + ∆ ∆ ∆ +
Segment + + + + +

Sonar ∆ ∆ ∆ ∆ +
Spam ∆ + ∆ ∆ +

TwoNorm + + + + +
Vehicle ∆ ∆ ∆ ∆ +
Vowel + + + + +

Waveform21 + + ∆ + +
Waveform40 + ∆ ∆ ∆ +

Yeast + + + + +
win/draw/loss 13/8/0 14/7/0 11/10/0 10/11/0 20/1/0

Table A.6: Comparison Table - The ensembles Size 100, ‘+’ shows that performance of
RPRD is statistically better than that algorithm for that dataset, ‘-’ shows that RPRDE
is statistically worse for that dataset than this algorithm, ‘∆’ shows that there is no
statistically significant difference in performance for this dataset between RPRDE and
that algorithm. The class noise is 10%.

Bibliography

[1] D. Achlioptas, Database-friendly Random Projections, In Proc. ACM Symp. on
the Principles of Database Systems, 2001, p. 274281.

[2] D. Achliptas, F. Mcsherry, and B. Scholkopf, Sampling Techniques for Kernel

Methods, In Annual Advances in Neural Information Processing Systems, 2001,
pp. 335–342.

[3] A. Agresti, An Introduction to Categorical Data Analysis, WileyBlackwell, 2007.

[4] E. Alpaydin, Combined 5 x 2 cv f Test Comparing Supervised Classification

Learning Algorithms, Neural Computation 11 (1999), no. 8, 1885–1892.

[5] M. F. Balcan and A. Blum, On a Theory of Learning with Similarity Functions,
Proceedings of the 23rd International Conference on Machine Learning, 2006.

[6] M. F. Balcan, A. Blum, and S. Vempala, Kernels as Features: On Kernels, Mar-

gins, and Low-dimensional Mappings, Machine Learning 65 (2006), 79–94.

[7] A. Bertoni and G. Valentini, Ensembles Based on Random Projections to Improve

the Accuracy of Clustering Algorithms, Neural Nets, WIRN 2005,, 2006, pp. 31–
37.

[8] C. M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag New
York Inc, 2008.

[9] A. Blum and R. L. Rivest, Training a 3-node neural network is np-complete,
In proceeding of the 1988 Workshop on Computational Learning Theory, 1988,
pp. 9–18.

[10] I. Bratko and I. Kononenko, Learning Diagnostic rules from incomplete and noisy

data, Seminar on AI Methods in Statistics, London, 1986.

169

170 BIBLIOGRAPHY

[11] L. Breiman, Bagging Predictors, Machine Learning 24 (1996), no. 2, 123–140.

[12] , Randomizing Outputs to Increase Prediction Accuracy, Machine Learn-
ing 40 (2000), no. 3, 229–242.

[13] , Random Forests, Machine Learning 45 (2001), no. 1, 5–32.

[14] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression

Trees, CA: Wadsworth International Group, 1985.

[15] L. Brieman, Arching classifiers, The Annals of Statistics 26 (1998), no. 3, 801–
824.

[16] C. E. Brodley and P. E. Utgoff, Multivariate Decision Trees, Machine Learning
19 (1995), no. 1, 45 – 77.

[17] C. J. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
Data Mining and Knowledge Discovery 2 (1998), 121167.

[18] T. Cai and X. Wu, Research on Ensemble Learning based on Discretization

Method, 9th International Conference on Signal Processing, 2008, pp. 1528–
1531.

[19] E. Cantu-Paz and C. Kamath, Inducing Oblique Decision Trees with Evolutionary

Algorithms, IEEE Transaction on Evolutionary Computation 7 (2003), no. 1, 54–
68.

[20] J. Catlett, Megainduction: Machine learning on very large databases, Ph.D. the-
sis, Basser Department of Computer Science, University of Sydney, 1991.

[21] C. C. Chan and C. Batur A. Srinivasan, Determination of Quantization Intervals

in Rule Based Model for Dynamic Systems, Proceedings of the IEEE Conference
on Systems, Man, and Cybernetics, 1991, pp. 1719–1723.

[22] S. Dasgupta, Learning Mixtures of Gaussians, In 40th Annual IEEE Symp. on
Foundations of Computer Science, 1999, pp. 634–644.

[23] , Experiments with Random Projection, In Proc. Uncertainty in Artificial
Intelligence, 2000.

BIBLIOGRAPHY 171

[24] S. Dasgupta and A. Gupta, An Elementary Proof of the Johnson-lindenstrauss

Lemma, Tech. Report TR-99-006, International Computer Science Institute,
Berkeley, California, USA, 1999.

[25] C. S. Daw, C. E. A. Finney, and E. R. Tracy, A Review of Symbolic Analysis of

Experimental Data, Review of Scientific Instruments. 74 (2003), no. 2, 915–930.

[26] T. Van de Merckt, Decision Trees in Numerical Attribute Spaces, Proceedings of
the 13th International Joint Conference on Artificial Intelligence, 1993, pp. 1016–
1021.

[27] J. DePasquale and R. Polikar, Random feature subset selection for ensemble

based classification of data with missing features, MCS 2007, Springer Berlin
/ Heidelberg, 2007, pp. 251–260.

[28] T. G. Dietterich, Approximate Statistical Tests for Comparing Supervised Classi-

fication Learning Algorithms, Neural Computation 10 (1998), 1895–1923.

[29] , Ensemble Methods in Machine Learning, Proc. of Conf. Multiple Clas-
sifier Systems, vol. 1857, 2000, pp. 1–15.

[30] , An Experimental Comparison of Three Methods for Constructing En-

sembles of Decision trees: Bagging, Boosting, and randomization, Machine
Learning 40 (2000), no. 2, 1–22.

[31] T. G. Dietterich and G. Bakiri, Solving multiclass learning problems via error-

correcting output codes, J. Artificial Intelligence Research 2 (1995), 263–286.

[32] J. Dougherty, R. Kahavi, and M. Sahami, Supervised and unsupervised dis-

cretization of continuous features., In Machine Learning: Proceedings of the
Twelth International Conference, 1995.

[33] W. Fan, J. McCloskey, and P. S. Yu, A General Framework for Accurate and Fast

Regression by Data Summarization in Random Decision Trees, In proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, 2006, pp. 136 – 146.

[34] U. M. Fayyad and K. B. Irani, Multi-interval Discretization of Continuous valued

Attributes for Classification Learning, In Proceedings of the Thirteenth Interna-
tional Joint Conference on Artificial Intelligence, 1993, pp. 1022–1027.

172 BIBLIOGRAPHY

[35] U. M. Fayyad and K. B. Irani, The Attribute Selection Problem in Decision Tree

Generation, Proc. AAAI-92, MIT Press, July 1992.

[36] X. Z. Fern and C. E. Brodley, Random Projection for High Dimensional Data

Clustering: A Cluster Ensemble Approach, ICML, 2003, pp. 186–193.

[37] X.Z. Fern and C.E. Brodley, Random projection for high dimensional data clus-

tering: A cluster ensemble approach, Proc. of ICML, 2003.

[38] D. Fradkin and D. Madigan, Experiments with Random Projections for Machine

Learning, In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining, 2003, pp. 517–522.

[39] Y. Freud and R. E. Schpire, Experiment with a new boosting algorithm, Proceed-
ing of 13th Conference on Machine learning, 1996.

[40] Y. Freund, Boosting a Weak Learning Algorithm By Majority, Information and
Computation 121 (1995), no. 2, 256–285.

[41] Y. Freund and R. E. Schapire, A Decision-Theoretic Generalization of On-Line

Learning and an Application to Boosting, Journal of Computer and System Sci-
ences 55 (1997), no. 1, 119–139.

[42] G. Fumera, R. Fabio, and S. Alessandra, A Theoretical Analysis of Bagging as a

Linear Combination of Classifiers, IEEE Transactions on PAMI 30 (2008), no. 7,
1293–1299.

[43] G. Fumera, F. Roli, and A. Serrau, Dynamics of Variance Reduction in Bagging

and Other Techniques Based on Randomisation, In Proc. of Conf. Multiple Clas-
sifier Systems MCS2005, 2005, pp. 316–325.

[44] J. Gama, Oblique Linear Tree, In Second International Symposium on Advances
in Intelligent Data Analysis, (X. Liu and P. Cohen, eds.), Springer-Verlag, 1997,
pp. 187–198.

[45] , Functional Trees, Machine Learning 55 (June 2004), no. 3, 219–250.

[46] N. Garca-Pedrajas, C. Garca-Osorio, and C. Fyfe, Nonlinear Boosting Pro-

jections for Ensemble Construction, Journal of Machine Learning Research 8
(2007), 1–33.

BIBLIOGRAPHY 173

[47] P. Geurts, D. Ernst, and L. Wehenkel, Extremely Randomized Trees, Machine
Learning 63 (2006), no. 1, 3–42.

[48] L. K. Hansen and P. Salamon, Neural Network Ensembles, IEEE Transactions on
Pattern Analysis and Machine Intelligence 12 (1992), no. 10, 993–1001.

[49] D. G. Heath, S. Kasif, and S. Salzberg, Induction of Oblique Decision Trees, in
Proceedings of the 13th International Joint Conference on Artificial Intelligence,
Morgan Kaufmann, 1993, pp. 1002–1007.

[50] , Committees of Decision Trees, Cognitive Technology: In Search of a
Human Interface (Amsterdam, The Netherlands) (B. Gorayska and J. Mey, eds.),
Elsevier Science, 1996, pp. 305–317.

[51] R. Hecht-Nielsen, Context Vectors: General Purpose Approximate Meaning Rep-

resentations Self-organized from Raw Data, Computational Intelligence (1994),
4356.

[52] C. Hegde, M.B. Wakin, and R.G. Baraniuk, Random Projections for Manifold

Learning, in Neural Information Processing Systems (NIPS), 2007.

[53] K. M. Ho and P. D. Scott, Overcoming Fragmentation in Decision Trees Through

Attribute Value Grouping, In Proceedings of Second European Symposium,
PKDD 98 Nantes, France., 1998, pp. 337–344.

[54] T. K. Ho, The Random Subspace Method for Constructing Decision Forests,
IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998),
no. 8, 832–844.

[55] R. C. Holte, Very Simple Classification Rules Perform Well on Most Commonly

used Datasets, Machine Learning 11 (1993), 63–90.

[56] E. Hunt, J. Martin, and P. Stone, Experiments in Induction, Academic Press, New
York, 1966.

[57] L. Hyafil and R. L. Rivest, Constructing optimal binary decision trees is np-

complete, Information Processing Letter 5 (1976), no. 1, 15–17.

[58] P. Indyk and R. Motwani, Approximate Nearest Neighbors: Towards Removing

the Curse of Dimensionality, In Proceedings of the 30th Annual ACM STOC,
1998, pp. 604–613.

174 BIBLIOGRAPHY

[59] V. S. Iyengar, Hot: Heuristics for Oblique Trees, In Eleventh International Con-
ference on Tools with Artificial Intelligence., IEEE Press, 1999, pp. 91–98.

[60] W.B. Johnson and J. Lindenstrauss, Extensions of Lipshitz Mapping into Hilbert

Space, In Conference in modern analysis and probability, volume 26 of Contem-
porary Mathematics, Amer. Math. Soc., 1984, pp. 189–206.

[61] I. T. Jolliffe, Principal component analysis, Springer, 2002.

[62] C. Kamath, E. Cantu-Paz, and D. Littau, Approximate splitting for ensembles of

decision trees using histrograms, In Proceedings of the 2nd SIAM International
Conference on Data Mining, 2002.

[63] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas, On Combining Classifiers, IEEE
Transactions on Pattern Analysis and Machine Intelligence 20 (1998), no. 3, 226–
239.

[64] R. Kohavi and M. Sahami, Error-based and Entropy-based Discretization of

Continuous Features, In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, 1996, pp. 114–119.

[65] T. Kohonen, Selforganization and Associative Memory, SpringerVerlag, Berlin,
Germany, 1989.

[66] I. Kononenko, A Counter Example to the Stronger Version of the Binary Tree Hy-

pothesis, In ECML-95 Workshop on Statistics, Machine Learning, and Knowl-
edge Discovery in Databases, 1995, pp. 31–36.

[67] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wiley-
Interscience, 2004.

[68] L.I. Kuncheva and J.J. Rodriguez, Classifier ensembles with a random linear

oracle, IEEE Trans. on Knowledge and Data Engineering 19 (2007), no. 4, 500–
508.

[69] W. Kwedlo and M. Kretowski, An Evolutionary Algorithm using Mulivariate Dis-

cretization for Decision Rule Induction, In Principles of Data Mining and Knowl-
edge Discovery, 1999, pp. 392–397.

BIBLIOGRAPHY 175

[70] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, A Symbolic Representation of Time

Series, with Implications for Streaming Algorithms, In proceedings of the 8th
ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery. San Diego, CA, 2003, pp. 2–11.

[71] W. Maass, Efficient Agnostic Pac-learning with Simple Hypotheses, In Proceed-
ings of the Seventh Annual ACM Conference on Computational Learning Theory,
1994, pp. 67–75.

[72] D. D. Margineantu and T. G. Dietterich, Pruning Adaptive Boosting, Proc.
14th International Conference on Machine Learning, Morgan Kaufmann, 1997,
pp. 211–218.

[73] J. Maudes, J. J. Rodriguez, and C. G. Osorio, Disturbing Neighbors Diversity for

Decision Forests, Supervised and Unsupervised Ensemble Methods and Their
Applications (SUEMA 2008), 2008, pp. 67–71.

[74] T. M. Mitchell, Machine Learning, McGraw-Hill, 1997.

[75] F. Moosmann, E. Nowak, and F. Jurie, Randomized Clustering Forests for Image

Classification, IEEE Transaction on Pattern Analysis and Machine Intelligence
30 (September 2008), no. 9, 1632–1646.

[76] S. K. Murthy, S. Kasif, S. Salzberg, and R. Beigel, Oc1: A Randomized Induction

of Oblique Decision Trees, In Proceedings of the Eleventh National Conference
on Artificial Intelligence, 1993, pp. 322–327.

[77] T. Oates and D. Jensen, The Effects of Training Set Size on Decision Tree

Complexity, Proc. 14th International Conference on Machine Learning, 1997,
pp. 254–262.

[78] L. E. Peterson and M. A. Coleman, Principal Direction Linear Oracle for Gene

Expression Ensemble Classification., Workshop on Computational Intelligence
Approaches for the Analysis of Bioinformatics Data (CIBIO07); 2007 Int. Joint
Conference on Neural Networks (IJCNN07)., 2007.

[79] R. Polikar, Ensemble Based Systems in Decision Making, IEEE Circuits and Sys-
tems Magazine (2006), 21–45.

176 BIBLIOGRAPHY

[80] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

[81] J. R. Quinlan, Improved Use of Continuous Attributes in C4.5, J. Artif. Intell.
Res. 4 (1996), 7790.

[82] G. Rätsch, T. Onoda, and K.-R. Müller, Soft margins for AdaBoost, Machine
Learning 42 (2001), no. 3, 287–320.

[83] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, Rotation Forest: A New Clas-

sifier Ensemble Method, IEEE Transactions on Pattern Analysis and Machine
Intelligence 28 (2006), no. 10, 1619–1630.

[84] J.J. Rodriguez and L.I. Kuncheva, Naive bayes ensembles with a random ora-

cle, In Proc. 7th International Workshop on Multiple Classifier Systems, MCS07,
LNCS 4472, 2007, pp. 450–458.

[85] A. Schclar and L. Rokach, Random Projection Ensemble Classifiers, In Proc. of
11th International Conference on Enterprise Information Systems, 2009, pp. 309–
316.

[86] B. Scholkopf, A. J. Smola, and K. Muller, Nonlinear Component Analysis as a

kernel Eigenvalue problem., Neural Computation 10 (1998), 12991319.

[87] J. Shlens, A Tutorial on Components Analysis, 2005.

[88] L. Smith, A Tutorial on Components Analysis, Tech. report, University of Otago
(New Zealand), 2002.

[89] L. Torgo and J. Gama, Regression by Classification, Advances in Artificial Intel-
ligence, 1996, pp. 51–60.

[90] K. Tumer and J. Ghosh, Error Correlation and Error Reduction in Ensemble

Classifiers, Connect. Sci. 8 (1996), no. 3, 385–404.

[91] R. Avogadri G. Valentini:, Fuzzy Ensemble Clustering based on Random Pro-

jections for dna Microarray Data Analysis., Artificial Intelligence in Medicine,
2009, pp. 173–183.

[92] L. A. van der Ark, M. A. Croon, and K. Sijtsma, New Developments in Cate-

gorical Data Analysis for the Social and Behavioral Sciences, Psychology Press,
2004.

BIBLIOGRAPHY 177

[93] V. Vapnik, Statistical Learning Theory, Wiley-Interscience, New York, 1998.

[94] R. Vilalta, G. Blix, and L. Rendell, Global Data Analysis and the Fragmentation

Problem in Decision Tree Induction, In Pro. of the 9th ECML, 1997, pp. 312–
328.

[95] G. I. Webb, Multiboosting: A Technique for Combining Boosting and Wagging,
Machine Learning 40 (2000), no. 2, 159–196.

[96] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and

Techniques., 2 ed., Morgan Kaufmann San Francisco, CA, 2005.

[97] Y. Yang and I.W. Webb, A comparative study of discretization methods for naive-

bayes classifiers, In Proc. of the 2002 Pacific Rim Knowledge Acquisition Work-
shop (PKAW’02), 2002, pp. 159–173.

[98] O. T. Yldz and E. Alpaydn, Omnivariate Decision Trees, IEEE Transactions on
Neural Networks, VOL. 12, NO. 6, NOVEMBER 2001 12 (2001), no. 6, 1539–
1546.

[99] Li Yuanhong, D. Ming, and R. Kothari, Classifiability-based Omnivariate Deci-

sion Trees, IEEE Transactions on Neural Networks 16 (2005), no. 6, 1547–1560.

