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Abstract—Microarray data classification has been typically
seen as a difficult challenge for machine learning researchers
mainly due to its high dimension in features while sample size
is small. Because of this particularity, feature selection is usually
applied trying to reduce its high dimensionality. However, existing
algorithms may not scale well when dealing with this amount of
features, and a possible solution is to distribute the features into
several nodes. In this work we explore the process of distribution
on microarray data —which has recently gained attention— and
we evaluate to what extent it is possible to obtain similar results as
those obtained with the whole dataset. We performed experiments
with different aggregation methods, feature rankers and also
evaluated the effect of distributing the feature ranking process
in the subsequent classification performance.

I. INTRODUCTION

In the last years, microarray data classification has been
established as a serious challenge for machine learning re-
searchers. This type of data is used to collect information from
tissue and cell samples regarding gene expression differences
that are likely to be useful for diagnosing diseases or even
for distinguishing among specific types of tumor. The par-
ticularities that make microarray data interesting for machine
learning researchers are related with its high dimensionality
(from thousands to tens of thousands of genes) in contrast
with a small sample size (often less than 100 patients). In this
scenario, the typical classification task is to separate healthy
patients from cancer patients, based on their gene expression
“profile” [1].

Research studies have shown that the great majority of
the genes measures in a DNA microarray experiment are not
relevant for the classification task [2]. Thus, to avoid the “curse
of dimensionality” [3], feature selection is almost mandatory
in this domain. Feature selection is defined as the process of
identifying and removing irrelevant features from the data, so
that the learning algorithm focuses only on those aspects of
the data useful for analysis and future prediction [4].

Feature selection methods can be broadly divided into ap-
proaches that are classifier-independent (filters), and classifier-
dependent (wrapper and embedded methods) [4]. Wrappers
involve optimizing a predictor as part of the selection process,
employing the accuracy of a particular classifier as the measure
of utility for a candidate subset. This process produces subsets
of features that are highly specific to the classifier chosen, so

any change in the learning model may render the subset of
features suboptimal. Embedded methods simply select features
as a fundamental part of building a classifier, like decision
trees, for example. These methods are less computationally
expensive than wrappers, and also less prone to overfitting, but
still use quite strict model structure assumptions [5]. Finally,
filter methods are independent of any particular classifier
model, and rank features based on statistical dependencies
present between the features and the target class in the data.
Therefore, they extract features that are generic, having incor-
porated few assumptions. Because of its speed of computation,
filters are faster than embedded and wrapper methods, so they
are usually preferred to deal with microarray data and hence
they will be the focus of this work.

Usually, feature selection is applied in a centralized manner,
i.e. a single learning model is used to solve a given problem.
However, with the recent advent of Big Data, the need of
distributing the feature selection process has arisen. Most of
the existing algorithms were developed when dataset sizes
were smaller and now they do not scale well and their effi-
ciency significantly deteriorates or even become inapplicable.
To solve this problem, the feature selection process can be
parallelized by distributing the subsets of data to multiple
processors, learning in parallel and then combining them,
reducing the training time considerably.

Although this approach can be applied to any feature-
abundant classification problem, it is especially suitable for
application to microarray data, due to the large number of
input features/genes that can be distributed across the available
nodes. In fact, some works have already used a distributed
feature selection approach to deal with microarray data [6],
[7], [8]. However, the reduction in complexity that is achieved
by distributing the data, usually comes at the cost of losing
information, since the partial outputs need to be eventually
combined. Since the data is divided by features, it is necessary
to work with partial rankings, and so information about
interaction or redundancy between features might be omitted.

The aim of this work is to explore if the particularities
of DNA microarray data make them suitable for applying
a distributed feature process. Specifically, we examine the
effects of including some overlap in the subsets of data,
and analyze different possibilities for combining the partial

Kostas
Typewritten Text
© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The original IEEE publication is available at: 

Kostas
Typewritten Text

Kostas
Typewritten Text

Kostas
Typewritten Text

Kostas
Typewritten Text



results. Finally, we provide some recommendations about the
most appropriate aggregation method to combine the partial
rankings or which feature selection methods are more robust
to dealing with incomplete rankings.

II. MICROARRAY DATA

DNA is a molecule that encodes the “program” for future
organisms. DNA has coding and non-coding segments. The
coding segments, also known as genes, specify the structure
of proteins, which do the essential work in every organism.
Genes make proteins in two steps: DNA is transcribed into
mRNA and then mRNA is translated into proteins. Advances
in molecular genetics technologies, such as DNA microarrays,
allow us to obtain a global view of the cell, with which it is
possible to measure the simultaneous expression of tens of
thousands of genes [9]. The gene expressions acquired from
a DNA microarray can be used as inputs to large-scale data
analysis to increase our understanding of normal and diseased
states.

Apart from the obvious problem of having an extremely
high dimensionality (in the order of tens of thousands of
genes), microarray data present other experimental compli-
cations that may hinder the process of classification [1].
The small sample size might impact on the error estimation,
leading to unsound applications of classification methods.
Moreover, microarray datasets are usually unbalanced (i.e.
a dataset is dominated by a major class with significantly
more samples than the minority one) so the minority class
instances are sometimes ignored by the learning algorithms.
These characteristics render the analysis of microarray data
an interesting and challenging domain for machine learning
researchers.

III. FEATURE RANKING

As mentioned in the Introduction, this work will be focused
on filter methods for feature selection. Filter methods can
be classified according to the output they produce. Some of
them —so-called subset methods— return a subset of optimal
features, while others —known as ranker methods— produce
an ordered ranking of all the features obtained from assigning
them weights according to their degrees of relevance [10].

Furthermore, feature ranking methods can be divided into
univariate methods—those that take into account only the indi-
vidual relevance of each feature—and multivariate methods—
those which take into account feature dependencies. Theoret-
ically, univariate methods are expected to be more tolerant to
incomplete datasets (i.e. datasets in which not the whole set of
features is available) than multivariate methods, although at the
cost of missing feature dependencies. Feature ranking methods
are very common in the literature (see [5], [11]) and in this
work we chose two popular representative methods1: one
univariate (MIM, Mutual Information Maximization [12]) and
one multivariate (mRMR, minimum Redundancy Maximum
Relevance [13]). In fact, the latter was specifically proposed

1We used MIM and mRMR implementations from FEAST Toolbox for
Matlab http://www.cs.man.ac.uk/∼gbrown/fstoolbox/

for dealing with DNA microarray data, since it can take into
account the redundancy usually present in this type of data.

IV. THE RATIONALE OF THE APPROACH

In the last few years, there has been an important amount of
attention devoted to DNA microarray classification. Because of
the high dimensionality of this type of data (together with the
redundancy of the genes), feature selection is usually applied
as a preprocessing step [1].

Since the end of the 1990s, when microarray datasets began
to be dealt with, a large number of feature selection methods
have been applied —because of their high dimensionality
together with the redundancy of the genes. In the literature,
one can find both classical methods and methods developed
especially for this kind of data. Due to the high computational
resources that these datasets demand, wrapper and embedded
methods have mostly been avoided, in favor of less expensive
approaches such as filters.

In fact, the problem is that, when dealing with a high num-
ber of input features, the majority of algorithms were designed
under the assumption that the dataset can be represented as a
single memory-resident table. So, if the entire dataset does not
fit in main memory, these algorithms are not applicable.

A possible solution to this problem is to distribute the
dataset into several nodes (or processors). In this manner, a
feature selection algorithm may take advantage of preprocess-
ing multiple subsets in sequence of concurrently. Nevertheless,
a common problem with this approach is the unavoidable
information loss, since the partial outputs (the results obtained
from each node) need to be eventually combined.

There are two main techniques for partitioning and distribut-
ing data: vertically, i.e. by features, and horizontally, i.e. by
samples. In the case of microarray data, the distribution has to
be by features, as can be seen in Figure 1. Notice that, under
this scenario, it is necessary to work with partial rankings of
features (obtained from the features in each node), and so
information about interaction or redundancy between features
might be omitted.
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Fig. 1. Vertical distribution of the data

A. An example

We can characterize the problem of ranking a set of features
X = {X1, . . . , XF } as the problem of obtaining an ordered
ranking of them according to some metric (related to the
degree of importance) usually given by a feature selection
method. As we mentioned before, and because of distributing
the data across several nodes, we need to combine the partial
ranks and try to not incur in an important loss of information.



In this example, let us suppose that we have a number of
features (genes) F that we distribute across the different nodes
and that need to be ranked. Depending on the system in which
this approach is tested on, the bottleneck might be either the
number of nodes available or the number of features. If the
number of nodes is too high, each will have a small amount of
data so it will be more difficult to recover the ideal ranking.
On the contrary, if the number of nodes is low, each will have
to take more of the computational burden, hence there will be
less advantages to the distributed strategy.

To illustrate this problem, let N be the number of nodes
available, while the relevance of each feature is randomly gen-
erated as a number between 0 and 1. Once the partial rankings
(obtained from each node) are combined, we need a measure
to determine to what extent the combined ranking is close
to the ideal ranking (obtained when data is all together). For
this task, we use the Normalized Discounted Cumulative Gain
(NDCG) [14], which is often used to measure effectiveness
of web search engine algorithms or related applications. This
method returns a value between 0 and 1, where 1 means that
the rankings are identical. The pseudocode for this example
can be found in Algorithm 1.

Algorithm 1: Pseudo-code for generating the toy example
Data: D(S×F ) ← training dataset with S samples and F

input features
N ← number of nodes
S ← number of samples
F ← number of features
X←set of features, X = {X1, . . . , XF }
fn ← number of features to go to each node

Result: NDCG← similarity between the true ranking and
the combined ranking

1 Generate a random value between 0 and 1, Score(Xi),
for each feature Xi ∈ X, obtaining a true ranking
Rankt

2 for n← 1 to N do
3 D(S×fn) ← subset of data with fn random features
4 Rank the features in this node according to their

Score, obtaining a partial ranking Rankp(n)
end

5 for each feature f in X do
6 Avg(f)← calculate the average of its position in all

the partial rankings Rankp(n), ∀n ∈ N
end

7 Obtain a combined ranking Rankc by ordering Avg
8 NDCG← compare (Rankt, Rankc)

Figure 2 shows an example in which the number of features
to rank is F = 1000 and the maximum number of nodes
available is N = 1000. The NDCG value is represented
by the color, as the colorbar in the right side of the figure
depicts. As expected, when all the features are present on

each node, the NDCG value is 1 since the rankings are
identical. Nevertheless, even when we have 100 nodes and
800 features on each node, the rankings are not exactly the
same, which gives us an idea about the complexity of the
ranking combination task. From the figure, we can see that,
for ensuring good results to be obtained, it is necessary to
send a large number of features to each node, even when the
number of nodes available is also large. And it has to be noted
that, by doing so, the time complexity is barely reduced.
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Fig. 2. Example to illustrate the problem of distributing feature rankings,
with F = 1000 features.

As can be seen through this simple example, the problem
of distributing the features and obtaining accurate rankings of
them is not trivial, even when we can use the true importance
of the features, obtained from the whole set of examples.
Arrow’s impossibility theorem [15] states that, when having
at least two rankers (in this case, nodes) and at least three
options to rank (in this case features), it is impossible to design
an aggregation function that satisfies in a strong way a set of
desirable conditions at once (see more details in [15]). So, this
theorem also acknowledges how challenging it is to distribute
the feature ranking process.

V. THE DISTRIBUTING METHODOLOGY

In this section we will present some strategies that are
possible when distributing features across several nodes or
processors. When building the subsets of features, it is possible
to define a level of overlap among them or leave it random.
Moreover, there are several strategies to combine the rankings
obtained from the different nodes into a final ranking of
features. In the following subsections, we will comment on
these strategies in detail.

A. Distribution by features

Although the most common approach in the literature when
dealing with distributed learning is to distribute the data in
subsets of samples, there are situations —such as DNA mi-
croarray classification— in which the number of features is the
bottleneck of the algorithms and it is more practical to divide
the data by features. Notice that in this case, and contrary to
the situation in which data is divided by samples, the rankings
are partial (i.e. they do not contain all possible features) so
their combination poses a big challenge to researchers.



To be able to combine the partial rankings, a certain level of
overlap among the different subsets of features on the available
nodes is not only desirable but also mandatory. The overlap
between two sets of features can be defined as the subset of
features that are common among them. In Figure 3 we can see
an example of overlap between two subsets of features. This
level of overlap needs to be carefully chosen. If the overlap is
too low (see Figure 3(a)), it is difficult to connect the partial
rankings and the performance is expected to be poor. On the
contrary, when the overlap is too high (see Figure 3(b)), the
performance is expected to be good, but at the cost of barely
reducing the complexity of the original problem.

4, 3, 7, 8, 12, 22, 15, 9

3, 5, 10, 2, 22, 14, 6, 11

(a) Low overlap

4, 3, 7, 8, 12, 22, 15, 9

3, 4, 7, 12, 22, 14, 8, 9

(b) High overlap

Fig. 3. Example of two cases of overlap between rankings, where the numbers
represent the indices of the features; in red the overlapping features.

A possible strategy to distribute the features is to randomly
select the features for each node, allowing that each feature can
be picked for more than a node. In other words, for each node
we randomly pick fn features from the whole set of features,
and this is repeated for each node. In this way we suppose
that some overlap might occur, although we cannot ensure to
what extent. Because of the random sampling of the features,
we need to make sure that all the features were selected at
least once to appear on each node, at the end of the process.
This can be solved, for example, by adding the features which
are not present in any node (if any) to the last node. In the
following, we will refer to this strategy as randomOverlap.

However, if we want to force a certain level of overlap
(between the features in a node and the remaining fea-
tures), a possible strategy might be the following: let Xi =
{X1, . . . , Xj} be the set of features assigned to node i and
Xr = {Xj+1, . . . , XF } the remaining features that will be
assigned to other nodes. If we are considering 20% of overlap,
we will add to Xi the 20% of features in Xr, randomly picked.
The drawback within this approach (named predefOverlap) is
that it is impossible to ensure a certain overlap between pairs
of nodes. In Section VI-A we will explore how these proposed
strategies behave.

B. Aggregation
Once the features are divided across the different nodes

and different partial rankings are obtained, it is necessary to
combine them in a single final ranking. Several strategies can
be used to aggregate the rankings, and in this paper we have
chosen the following four methods [16]:

• best.rank: assigning to each element to be ranked the
best position that it has achieved among all rankings.

• median: assigning to each element to be ranked the
median of all the positions that it has achieved among
all rankings.

• arith.mean: assigning to each element to be ranked the
mean of all the positions that it has achieved among all
rankings.

• geom.mean: assigning to each element to be ranked the
geometric mean of all the positions that it has achieved
among all rankings.

We illustrate the behavior of these methods with a simple
example. When the data is distributed by features, we have to
deal with partial rankings. Imagine that we have 6 different
features to be ranked {a, b, c, d, e, f}, and 3 nodes, such that
2 features go to each node. Suppose that we are considering
50% of overlap, so an extra feature from the remaining nodes
goes to each node. Then, for example, we will have elements
{a, b, c} in the first node, elements {c, d, f} in the second
node, and elements {e, f, a} in the third node. The three partial
rankings can be seen in Table I, in which elements not present
on a given node are being assigned the last position in the
ranking, according to the implementation provided in [16] (6,
in this example). In this case, the best.rank method will return
{a, d, c, f, b, e}, whereas the remaining methods will return
{a, f, c, d, b, e}. Notice that, for the sake of this example, we
are choosing the alphabetical order in case of ties.

TABLE I
EXAMPLE OF HOW THE AGGREGATION METHODS WORK WITH PARTIAL

RANKS.

Element R1 R2 R3 best.rank median arith.mean geom.mean
a 1 6 1 1 1 2.7 1.8
b 3 6 6 3 6 5.0 4.8
c 2 3 6 2 3 3.7 3.3
d 6 1 6 1 6 4.3 3.3
e 6 6 3 3 6 5.0 4.8
f 6 2 2 2 2 3.3 2.9

It has to be noted that certain aggregation methods are
more prone to deal with ties. For example, the best.rank
method, since the set of possible values obtained when ap-
plying this strategy is much more reduced than the possible
values obtained by arith.mean. Experiments using the different
aggregation methods can be found in Section VI-C.

VI. EXPERIMENTS

In this section we empirically evaluate the strategies com-
mented on the previous section about how to deal with the
distribution of feature rankings. We have considered nine
widely-used binary class microarray datasets [1], which are
available for download in [17], [18], [19]. The reason for
choosing binary datasets is that they are much more common
in the literature than the multiclass ones. As a matter of
fact, a typical microarray dataset consists of distinguishing
between having a given cancer or not, therefore the great
majority of the datasets are binary. Table II summarizes the
properties of the selected datasets: for each dataset, the number
of features (# Feats.), number of samples (# Samp.) and the
percentage of examples of each class is shown. The imbalance
ratio [20] (IR) is defined as the number of negative class
samples divided by the number of positive class samples,



in which a high level indicates that the dataset is highly
imbalanced. Finally, F1 (maximum Fisher’s discriminant ratio)
[21] checks for overlapping among the classes in which the
higher the F1, the more separable the data is. In order to
estimate mutual information of continuous features, they were
discretized, using an equal-width strategy into 5 bins.

TABLE II
SUMMARY DESCRIPTION OF THE DATASETS USED IN THE EXPERIMENTAL

STUDY

Dataset # Feats. # Samp. (%min,%maj) IR F1
Brain 12625 21 (33.33, 66.67) 2.00 0.89
CNS 7129 60 (35.00, 65.00) 1.86 0.45
Colon 2000 62 (35.48, 64.52) 1.82 1.08
DLBCL 4026 47 (48.94, 51.06) 1.04 2.91
GLI 22283 85 (30.59, 69.41) 2.27 2.35
Ovarian 15154 253 (35.97, 64.03) 1.78 6.94
SMK 19993 187 (48.13, 51.87) 1.08 0.41

In the following sections, we ask the questions: “how can we
deal with overlap between features?”, “how different feature
ranking methods behave when distributing the data?”, “which
is the best aggregation method in this scenario?”, and, finally,
“what is the relationship of these results with the classification
accuracy?”. To address these questions, we use some of the
datasets detailed in Table II.

Notice that, in the experiments carried out in this section,
we do not take into account the computational time. This
is because the focus of this paper is to find how much
information about the features is lost when distributing the
feature ranking process. As for the training time, it is assumed
that the time is reduced when dividing the data into the
available nodes.

A. Overlap between nodes

As mentioned in Section V-A, there are different options to
induce some overlap between the features on each node, which
is essential for a correct integration of the partial rankings.

In Figure 4 we can see a comparison between both strate-
gies, randomOverlap and predefOverlap, using a 50% of over-
lap in both cases; however, randomOverlap only guarantees
that some overlap may occur because we randomly added
50% extra features to each node. For simplicity, the Mutual
Information Maximization (MIM) [12] feature ranking method
and the best.rank aggregation method were chosen. Notice
that, by using MIM we could have used the mutual information
values computed for each feature and then build the final
ranking based upon these values, and the ranking recovering
problem would be trivial. However, we are using MIM as
representative of any feature ranking method and omitting
the mutual information values, but only working with the
partial rankings. The experiments were repeated 100 times
and we are showing the average NDCG values (computed
by comparing the combined ranking with the ideal ranking
obtained with the whole data). As the NDCG measure tends to
obtain high results if the number of elements to rank is high (as
happens with microarray data), it is common to compare only

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(a) Brain

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(b) CNS

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(c) Colon

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(d) DLBCL

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(e) GLI

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(f) Ovarian

0 20 40 60 80 100

# Nodes

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
D

C
G

Predef overlap
Random overlap

(g) SMK

Fig. 4. Experiments with different numbers of features per node and two
different strategies for dealing with overlap (50% in this case)

the top ranked elements. For instance, when evaluating the
performance of web search engines, it is common to compare
only the top 10 entries. In DNA microarray analysis, it is also
common to focus only on the top ranked features, so in these
experiments we will compute NDCG comparing only the top
X features, being X the 10% of the total number of features
(so, for instance, if we are dealing with Colon dataset, we
compare the top 200 features).

As can be seen, the experimental results show that using
a predefined level of overlap clearly outperforms the results
achieved when the overlap is random, and this improvement is
more pronounced as the number of nodes increases —which
implies a higher complexity of the problem. Notice that, for the
sake of fairness, the number of features to go to each node is
the same both when we are using a predefined level of overlap
and when we are randomly selecting the features belonging to
each node. It is necessary to bear in mind that, when picking



random subsets of features for each node, it might be even
possible that some features are never selected, and hence they
are never ranked. For all these reasons, the authors recommend
the use of predefined overlap when distributing the features
across the available nodes.

However, the required level of overlap comes at a com-
putational price. In fact, suppose that we are dealing with
Colon dataset (2000 features) and 10 nodes. Forcing a 50%
overlap implies that we would have 300 features per node,
instead of 200 features per node —although with this situation
there would be no overlap and it would not be possible to
combine the partial rankings. Trying to shed light on this
issue, we performed some experiments varying the level of
overlap. In Figure 5 we can see some experiments in which
the level of overlap ranges from 10% to 50% (again with
MIM feature ranker and best.rank aggregation method). As
can be seen, there are no big differences among the different
levels of overlap, although the variance is more pronounced
as the number of nodes increases —as expected. For the sake
of brevity, we are showing the results only for four of the
datasets.
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Fig. 5. Experiments with different numbers of features per node and different
levels of predefined overlap when using MIM

B. Univariate vs. multivariate methods

The experiments in the previous subsection (testing different
levels of overlap) were executed with MIM feature ranker,
which is a univariate method so it is expected that it is more
robust with respect to incomplete data —since it does not
have to take into account interactions between features, such
as redundancy. However, when dealing with microarray data,
it is common that researchers employ multivariate data, since
it is well-known that most genes in a microarray experiment
are redundant between each other. The problem is that dealing
with redundancy implies a higher computational cost, which
makes more necessary to distribute the feature ranking process.

For example, the theoretical complexity of MIM is O(SF )
(where S is the number of samples and F is the number of
features) whilst that of mRMR is O(SF 2). When the number
of features is in the order of thousands (as it is the case in
the scenario at hand), this increase in complexity becomes, in
some cases, unbearable.

Figure 6 shows the same experiment we perform with
MIM univariate ranker method (testing different nodes and
different levels of overlap) but, in this case, we used the
mRMR multivariate method. Because of the time complexity
restrictions of mRMR (it takes in the order of days to compute
the whole ranking for some datasets), we run the experiment
only with Colon and DLBCL datasets, and we started the
number of nodes in 20.

As can be seen from the figures, the results when using
mRMR are worse than when using MIM (Figure 5). For
DLBCL dataset, the minimum NDCG obtained with MIM
was around 0.83, whereas with mRMR it was 0.7. Even more
drastic is the deterioration in the case of Colon, in which the
worst NDCG value with mRMR drops until 0.5. In light of
these results we can see that, the more we need to distribute
the data —i.e. because of the computational complexity or
multivariate methods—, the more information we lose when
recovering the ranking.
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Fig. 6. Experiments with different numbers of features per node and different
levels of predefined overlap when using mRMR

C. Best aggregation method

In Section V-B, we mentioned that there are several strate-
gies to combine the partial rankings into a final ranking of
features. Specifically, we chose four different methods, named
best.rank, arith.mean, geom.mean and median. So far, in the
experiments we used the best.rank method, but in this section
we will perform some experiments to compare it with the other
aggregation methods.

Figure 7 shows the NDCG values on average over the
seven datasets presented in Table II, when the features are
divided from 2 to 100 nodes, with 50% of overlap, and for
100 repetitions; for the four aggretation methods considered.
As feature ranking method, we chose MIM. The results show
that the best.rank method clearly outperforms the remaining
aggregation methods, although of course its performance de-
grades as the number of nodes increases.

Trying to understand the reasons behind the superiority of
the best.rank method, let’s remember the example depicted in
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Fig. 7. NDCG across 7 datasets and 100 repetitions; when using MIM
feature ranking method, with 50% overlap and predefOverlap strategy. The
box indicates the upper/lower quartiles, the horizontal line within each shows
the median value, while the dotted crossbars indicate the maximum/minimum
values.

Table I, which showed how these methods work with partial
rankings. In this case, it is very likely that ties happen with the
median method, leading to a poor performance as the number
of nodes increases. In fact, this behavior can be seen in Figure
7(b). The superiority of the best.rank method is explained
because it is the only method that can overlook the presence of
many “last” positions for each element, which greatly affects
the performance of the other methods. A line of future work
can be to improve the treatment of partial rankings by these
aggregation methods.

In light of these results, the authors suggest the use of the
best.rank method for dealing with distributed DNA microarray
data.

D. Relationship with classification accuracy

At this point, it is necessary to clarify that including
classifiers in our experiments is likely to obscure the experi-
mental observations related to feature selection performance,
since they include their own assumptions and particularities,
and some classifiers even perform their embedded feature
selection—such as decision trees. Therefore, in these experi-
ments we use a simple nearest neighbor classifier (k = 3), this
is chosen as it makes few (if any) probabilistic assumptions
about the data, and we avoid the need for parameter tuning.

Figure 8 shows the % classification accuracy obtained by
a 3-NN classifier on Colon and DLBCL datasets using MIM
and mRMR feature selection methods. For evaluating the loss
in classification accuracy when distributing the data, we are
comparing the results obtained when using the ranking built
with the whole dataset, with the rankings achieved when
distributing the data by features. As aggregation method, we
used best.rank, as suggested in Section VI-C. We divided the

data in 50 nodes and we added a 50% of overlap between
nodes. Since for classification we need to establish a threshold
in the ranking returned by the feature selection method, we
opted for considering the top features from 5 to 50, with
increments of 5. For calculating the classification accuracy of
both distributed approaches, the whole process was repeated
100 times and averaged.
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Fig. 8. Classification accuracy obtained with a 3-NN classifier on Colon and
DLBCL datasets and reported on average for 100 repetitions. The best.rank
aggregation method was employed.

The experimental results show that, overall, there is a
negligible loss in accuracy when applying a distributed ap-
proach. Moreover, we can see that the results obtained by
distributing the data are, in some cases, more stable than those
achieved with the whole ranking. This is because, in some way,
distributing the features across nodes and then combining the
partial results into a final one is the same idea also known
as ensemble learning or mixture of experts, which states that
combining the outputs of several experts yields better and more
robust results than a single expert [22]. However, analyzing
specific aspects related to classification is out of the scope of
this paper.

In summary, these experiments demonstrate that it is possi-
ble to distribute the data without significantly compromising
the classification accuracy, since this measure is the ultimate
form of evaluation of the goodness of a feature ranking
method.

VII. CONCLUSION

This work has presented an analysis of how distributed
strategies affect to DNA microarray data. These data are
characterized by having a much larger number of features
than of samples, so distributing the features across different
processing nodes might alleviate the computational work of
feature ranking methods and therefore the training time will
be reduced. However, when distributing data, the crucial point
is the combination of the incomplete rankings generated at



each node, aiming at losing the smallest amount of information
possible, compared to the ideal ranking. From the experiments
carried out in this paper, we can draw some conclusions and
recommendations to the users:

• When the bottleneck of the problem is the large number
of features, and so we distribute the data by features, it
is essential to introduce some level of overlap between
the features appearing in the different nodes, to ensure
a correct combination of the partial rankings. We have
explored several techniques of introducing overlap, and
the experimental results showed that it is better to ensure
a determined level of overlap. The level of overlap has
to be carefully chosen, having in mind that a high degree
of overlap implies a higher computational cost.

• When it comes to aggregate the partial ranks, in this
scenario the best option according to the experiments was
the so-called the best.rank aggregation method.

• Regarding the choice of univariate or multivariate feature
ranking methods, we found that when using multivariate
methods, the loss of information given by distributing
the data is higher. However, depending on the degree of
redundancy present in the data, it might be necessary to
employ a multivariate approach. In this case, the number
of nodes needs to be reduced to the extent possible, trying
to find a trade-off between computational complexity
reduction and loss of information.

• In terms of classification performance, experiments with
a simple nearest neighbor classifier allowed us to check
that distributing the data—to an acceptable extent—does
not seem to compromise the classification accuracy.

In summary, DNA microarray data can benefit from a dis-
tribution process, although some choices have to be carefully
made. For example, the method for aggregating rankings must
be best.rank, and a predefined level of overlap is necessary
among nodes. Having said that, the authors think that DNA
microarray data is a suitable focus for research into distributed
feature selection strategies.

As future work, we have identified an important need
for developing new aggregation methods that can deal more
efficiently with partial rankings and with ties along different
rankings. Furthermore, new scenarios in which the distribution
has to be done by samples must be explored. It would be also
interesting to add some comparisons of computational cost in
terms of computational time and memory usage and the use
of more feature rankers in the experimental study.
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