
Modeling UCS as a Mixture of Experts

Narayanan U. Edakunni
Dept. of Computer Science

University of Bristol
nara@cs.bris.ac.uk

Tim Kovacs
Dept. of Computer Science

University of Bristol
kovacs@cs.bris.ac.uk

Gavin Brown
School of Computer Science

University of Manchester
gavin.brown@manchester.ac.uk

James A. R. Marshall
Dept. of Computer Science

University of Bristol
marshall@cs.bris.ac.uk

ABSTRACT
We present a probabilistic formulation of UCS (a sUpervised
Classifier System). UCS is shown to be a special case of mix-
ture of experts where the experts are learned independently
and later combined during prediction. In this work, we de-
velop the links between the constituent components of UCS
and a mixture of experts, thus lending UCS a strong ana-
lytical background. We find during our analysis that mix-
ture of experts is a more generic formulation of UCS and
possesses more generalization capability and flexibility than
UCS, which is also verified using empirical evaluations. This
is the first time that a simple probabilistic model has been
proposed for UCS and we believe that this work will form a
useful tool to analyse Learning Classifier Systems and gain
useful insights into their working.

Categories and Subject Descriptors
G3 [Mathematics of Computing]: Probability and Statis-
tics

General Terms
Algorithm

Keywords
Learning Classifier System, probabilistic modeling, mixture
of experts, UCS

1. INTRODUCTION
Recently there has been a growing interest in probabilistic

models for Learning Classifier Systems (LCSs), the genetics-
based machine learning models introduced by Holland. Such
models would help integrate the LCS field into mainstream
machine learning research by drawing parallels to other ex-
isting machinery in probabilistic machine learning. In this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

paper we provide an explicit probabilistic model for a spe-
cific Learning Classifier System called UCS, which stands
for sUpervised Classifier System [1].

When we try to establish the equivalence of two seem-
ingly disparate learning algorithms it is important to estab-
lish the characteristics of the learning machines that we are
to compare. In this paper we establish the equivalence in
representation of data by the learned machines and do not
concern ourselves with the algorithm that is used to learn
the particular representation. The logic behind this reason-
ing being that the representation is more important while
making decisions using the learned machine rather than the
actual method used to learn the representation. Thus, while
UCS uses a genetic algorithm to learn the optimal represen-
tation, a mixture of experts learns through a non-stochastic
Expectation Maximisation algorithm [3], although both of
them share similar prediction routines for classification.

In this paper we compare UCS with a mixture of experts
using a classification problem with an input space made up
of binary strings of length D. The number of classes is taken
to be K and the classification is performed using an ensemble
(also called a population) of classifiers (called individuals or
rules) each made up of a condition and a class (or action).
A condition is a ternary string composed of characters from
{0, 1, #} where # is a don’t care symbol which expresses
generalisation over input strings. Finally, we denote the
space of all D-length ternary strings by S and note that its
cardinality is 3D.

The paper starts with a brief introduction to UCS followed
by an introduction to the probabilistic model for the mixture
of experts. The equivalence between a mixture of experts
and UCS is then established in Section 4 by deriving the
UCS classification rules from a two component mixture of
experts. Following this the two systems are compared in
terms of their components. Finally, they are empirically
compared on toy data sets to support the theoretical analysis
derived in this paper. It must be noted that the aim of this
paper is to come up with a probabilistic model of UCS and
not to advocate a novel method for classification, although
the probabilistic model developed in this paper has better
learning abilities than UCS.

2. UCS
We now describe UCS [1] in a way which should be com-

prehensible to those with a background in either LCS or
ensembles. UCS is an ensemble of classifiers which combine

1187

their individual decisions to produce a unified output. UCS
can be applied to supervised learning problems in which a
labelled training set of (input,class) pairs is available. UCS
uses a Genetic Algorithm (GA) to evolve (create and delete)
classifiers using the Michigan approach [7] in which each
classifier applies to (matches) a subset of the input space. A
classifier’s condition and action is set when the classifier is
created by the genetic algorithm and do not change.

We will not describe the operation of the genetic algo-
rithm as it is of no consequence to our analysis, but we will
outline its function, which is to evolve a population of classi-
fiers which make good quality predictions for the inputs they
match. The quality of prediction is determined by a fitness
function which is based on the number of correct and incor-
rect predictions made on the training data. Consequently,
evaluation of classifier fitness on training data is embedded
within the evolutionary cycle; the evolution and evaluation
of classifiers interleave.

In order to evaluate the fitness of the current population
on the training data we first select a training input. The
subset of the population which matches the input, called
the match set, is identified using a match function. The
match set is composed of action sets consisting of classifiers
which predict the same class (action). Only classifiers in
the match set contribute to the prediction for the current
input and only they have their fitness updated based on
their prediction.

The match function M(., .) is defined by a simple bitwise
comparison of the input string with the classifier condition.
A 1 bit in the condition matches with a 1 bit in the corre-
sponding position in the input string, 0 with a 0 bit and a
with both 0 and 1 bits of the input string. Given the con-
dition of the jth rule rj , and the input string x, the match
function is defined as -

M(j,x) =

(
1 if x matches rj

0 otherwise

For example condition 00# matches two input strings: 000
and 001, while ### matches all 3-bit input strings.

In UCS the fitness function F (.) is -

F =

„
number of correct classifications

number of matches

«v

where the number of matches is the number of times the
classifier matched an input string from the training set, and
the number of correct classifications is the number of times
it matched and its class agreed with the class specified by
the training set. If xi is one of the training input strings and
ci the corresponding class label then the fitness of a rule j
with class k is given by -

F (j, k) =

„ P
i M(j,xi)I(ci == k)P

i M(j,xi)

«v

(1)

where I is an indicator function which takes value 1 when
its argument evaluates to true and 0 otherwise and v ≥ 1 is
an arbitrary parameter which is used to tune the selective
pressure of the genetic algorithm. Since our analysis will not
include the operation of the genetic algorithm we set v to 1
for simplicity. An alternative definition of rule accuracy has
been provided by [8] which uses a Bayesian rule to derive
the fitness. At convergence with large amounts of data the
Bayesian fitness rule corresponds to the definition in Eq. (1).

Figure 1: The graphical model of the mixture of
experts

The rules that define the match is pre-defined and fixed for
a particular implementation of UCS. In contrast, the classi-
fiers of a population are evolved for a particular training set,
and the fitness of the population is evaluated/learned from
that training set. Rather than model the evolutionary pro-
cess we simply model its output: the population. The pop-
ulation is composed of condition-action rules. Recall from
Section 1 that the set of possible conditions is denoted S
and that there are K classes. Any population, then, is com-
posed of elements from the set S ×{1 . . . K}. We model the
current population using an inclusion function I(., .) which
is an indicator function defined over the set S × {1 . . . K}.
I takes values of 1 or 0 depending on whether a particular
classifier is included in the population or not.

The prediction algorithm of UCS uses the trained clas-
sifiers to predict the class label for a test input xq. The
test input defines a match set and action sets. The sum of
fitnesses of the classifiers in each of the action sets is com-
puted and the action corresponding to the action set with
the maximum sum of fitness is taken as the action of the
system as a whole. The process can be represented as -

S(xq, c = k) =

TX
j=1

F (j, k)×M(j,xq)× I(j, k) (2)

where S(xq, c = k) is the support for class k for a test in-
put string xq, F (j, k) is the fitness for the jth classifier with
class(action) k, M the match function, I the inclusion func-
tion and T = |S| = 3D where D is the length of the bi-
nary input string. The support S is computed for all of
k = 1 . . . K classes and the class with the maximum support
is taken as the prediction of the ensemble.

3. MIXTURE OF EXPERTS (MOE)
A mixture of experts is a probabilistic model associated

with a stochastic process where the data is assumed to be
generated from distinct experts with various probabilities
[6]. The generative process can be graphically illustrated as
in Fig. (1) where x is input, c the class label corresponding
to the input and z is the hidden multinomial variable that
points to the expert which is responsible for the particular
input-class pair. Associated with each edge of the graph is a
conditional probability that relates the two variables repre-
sented by the respective nodes. Equivalently, the graphical

1188

model given by Fig. (1) can be written down as a factorisa-
tion of the joint probability of the class variable c and the
input x -

P (x, c) =

TX
j=1

P (c|z = j)P (x|z = j)P (z = j) (3)

In our case, an expert would be a ternary coded string condi-
tion with as many experts as there are conditions. Hence T
in Eq. (3) corresponds to the number of experts and is equal
to the cardinality of set S. The probabilistic model given
by Eq. (3) and illustrated by Fig. (1) assumes that data are
generated by first choosing a condition with probability P (z)
and this condition in turn chooses an input string from all
possible strings that it matches with a probability of P (x|z).
For example, if the chosen condition is 10# then the pos-
sible inputs that it can generate (or match) are {100, 101}.
In the absence of any prior knowledge, each of the matching
inputs have equal probability of being generated. Finally,
a class label is chosen according to P (c|z). The input-class
pair thus generated would follow a joint probability distribu-
tion given by Eq. (3). In Eq. (3) there are three important
distributions that determine the likelihood of data -

1. The conditional class probability P (c|z = j) which is
an unknown constant for a given j

2. Conditional probability of the data given the condition
string is a known constant and is given by -

P (x|z = j) =

(
2−(no. of # in z) if x matches z,

0 otherwise
(4)

3. The probability of the individuals in the population
P (z = j) which is an unknown constant.

The unknown probability values in the model need to be de-
termined by maximising the likelihood of the training data.
The simplest method to optimise the likelihood is through
an Expectation Maximisation (EM) algorithm. Assuming
an independently and identically distributed data, log like-
lihood is given by -

L = ln

NY
i=1

P (ci,xi)

=

NX
i=1

ln P (ci,xi)

and, using Eq. (3),

=

NX
i=1

ln
X

j

P (ci|zi = j)P (xi|zi = j)P (zi = j)

where N is the number of training instances. Using Jensen’s
inequality, the lower bound for L is given by -

L ≥ J =
X

i

X
j

P (zi = j|xi, ci) ln P (ci,xi, zi = j)

J =
X

i

X
j

P (zi = j|xi, ci) ln P (ci|zi = j)

+
X

i

X
j

P (zi = j|xi, ci) ln P (xi|zi = j)

+
X

i

X
j

P (zi = j|xi, ci) ln P (zi = j)

The two quantities that we need to determine are the con-
ditional probability of the class given a condition string
(P (ci|zi = j)) and the probability of the condition itself
(P (zi = j)). We denote the former as αj,k = P (ci = k|zi =
j) and the latter as γj = P (zi = j). We can now use the
lower bound given by J to optimise the log likelihood given
by L. An EM algorithm to optimise the likelihood consists
of two different steps.

E-step : In this step we compute the posterior of the hidden
variables as

P (zi = j|ci,xi) =
P (ci|zi = j)P (xi|zi = j)P (zi = j)P
j P (ci|zi = j)P (xi|zi = j)P (zi = j)

(5)

M-step : In this step we compute the values of the pa-
rameters (α and γ) by taking the derivative of J with
respect to these parameters and setting them to zero -

J (αj,k) =
X

i

X
j

P (zi = j|xi, ci) ln α
I(ci==k)
j,k

∂J
∂αj,k

=
X

i

P (zi = j|xi, ci)I(ci == k)

αj,k

Equating ∂J
∂αj,k

to zero with the constraint of
P

k αj,k =

1 yields -

αj,k =

P
i P (zi = j|xi, ci)I(ci == k)P

k

P
i P (zi = j|xi, ci)I(ci == k)

(6)

We can use a similar procedure to estimate γ and this
results in -

γj =

NX
i=1

P (zi = j|xi, ci)/N (7)

Having trained a mixture of experts we can use the model
to predict the class for an unseen test input xq by evaluating
the joint probability of the data for different classes -

P (xq, c = k) =

TX
j=1

P (c = k|z = j)P (xq|z = j)P (z = j)

(8)
The joint probability is evaluated for k = 1 . . . K classes
and the class with the maximum value is chosen as the pre-
diction for xq. In this paper we propose that the form of
class prediction defined by Eq. (8) is equivalent to UCS
(Eq. (2)) with P (c|z = j) serving as the fitness function
for rule j, P (xq|z = j) the matching function for the UCS
and P (z = j) the inclusion function as summarised in Table
1. The proposed equivalence between components of MOE
and UCS might seem ad hoc especially since the training rule
for fitness as given by Eq. (1) is different from the training
rule for P (c|z) given by Eq. (6). The other discrepancy is
between the matching function of UCS which takes only val-
ues from {0, 1} whereas P (x|z) takes on real values in the
interval [0, 1]. These discrepancies can be attributed to the
difference in training of MOE and UCS as explained in the
following sections.

4. UCS VS MOE
In this section we look at the similarities and differences

between UCS and MOE formulations in terms of their cor-
responding constituents of fitness, matching and inclusion

1189

MOE UCS
P (c|z) fitness
P (x|z) matching function
P (z) inclusion function

Table 1: Equivalence between UCS and MOE

functions. One of the difficulties while comparing UCS and
MOE is their differing training routines. To set a common
ground we switch off the GA and deletion heuristics of UCS
and include all the condition-action pairs from S×{1 . . . K}
in the population. It must be noted that this does not affect
the learning of the fitness function of an individual classifier
since it is independent of others in the population.

4.1 Fitness function vs class probability
In an MOE, mixture probabilities of all the experts are

learned simultaneously with one being dependent on others.
This is in contrast to a UCS where the fitness of classifiers
are determined independent of each other. This results in
different learning rules for the fitness function of UCS and
MOE. The fitness rule for UCS can still be derived from the
probabilistic model given by Fig. (1), if we slightly change
the training methodology of a mixture of experts. Instead
of training all the classifiers together in a single MOE we
form complement mixtures for each individual rule of the
population. A complement mixture model can be written
down as -

P (c,x) = P (c|z′ = 1)P (x|z′ = 1)P (z′ = 1)

+ P (c|z′ = 0)P (x|z′ = 0)P (z′ = 0)

where z′ = 1 corresponds to the z = j condition of the
original model and z′ = 0 would be its complement. It
must be noted that although we have changed the model
to a two component MOE, the constituents of the mixture
have the same probabilistic model as Fig. (1). The matching
probability in a complement mixture model has the property
that ∀x P (x|z′ = 1) = 0 ⇒ P (x|z′ = 0) 6= 0 and vice versa.
This property ensures that the complement of a condition
matches all the input strings that the condition string itself
does not match. We can now train all the rules in the rule
set S using complement mixtures. This would guarantee
that the learning rule for each rule is independent of the
others. The training and the prediction routines for a UCS
formulated as a set of complement mixtures is illustrated in
Fig. (2). For a complement MOE corresponding to rule j,
the posterior probability derived in Eq. (5) will transform
into -

P (z′i = 1|ci,xi) =
P (ci|z′i = 1)P (xi|z′i = 1)P (z′i = 1)P

l=0,1 P (ci|z′i = l)P (xi|z′i = l)P (z′i = l)

=

(
0 P (xi|z′i = 1) = 0

1 P (xi|z′i = 1) 6= 0

= I(xi matches rule j)

= M(xi, rj) (9)

Figure 2: Training and prediction routines for UCS
using complement mixtures

Substituting Eq. (9) in Eq. (6) we get -

αj,k =

P
i M(xi, rj)I(ci == k)P

k

P
i M(xi, rj)I(ci == k)

=

P
i M(xi, rj)I(ci == k)P

i M(xi, rj)

which is equivalent to the fitness measure as defined in Eq. (1).
This demonstrates the link between an MOE and a UCS. In
a UCS, complement mixture model is used during the train-
ing phase whereas the trained experts are combined as a con-
ventional MOE during prediction. Hence, the model used
for training is different from the model used for prediction
and can result in inconsistencies. The issue of independent
vs dependent training is well known in the field of ensemble
learning and it has been shown that training an ensemble
of experts without considering their correlations can lead to
sub-optimal results [2]. A detailed explanation of indepen-
dent learning in UCS and its potential inconsistencies is not
within the scope of this paper but can be found in [5].

4.2 Matching function vs input probability
A matching function in UCS serves to select a classifier

to include in the prediction process. The classifiers which
match the test input string are included while calculating
the sum of fitnesses. The matching function takes a value of
1 if the input string matches otherwise it takes value 0. On
the other hand the input probability given by P (x|z = j)
measures the degree of match of input string x with rule j.
This quantity measures the confidence of each rule in its pre-
diction as a function of the input space. The match function
is illustrated in Fig. (3), where a table of match probabilities
is displayed. The rules form the column of the table and the

1190

Rules

In
pu

t s
tr

in
g

00 01 10 11 0# #0 1# #1 ##

00

01

10

11

Figure 3: Illustration of the conditional probability
of an input string given a rule

input string the rows. The intensity of the colour in the grid
indicates the probability of match with white corresponding
to probability 1 and black to 0. We can see that specific rules
have high confidence over a small region of space in contrast
to a generic rule which has a more diffused probability mass.
Hence while calculating the support for a class using a sum
of fitness, the fitness needs to be weighted by the confidence
of each expert. The absence of confidence weighting in UCS
is another of its drawbacks. To illustrate the difference with
an example, let us consider a population having two rules -
001, 00#. Given a single training example of 001, both will
have equal fitness, but, when used for prediction the more
specific rule will inherently be more trustworthy than the
generic one and hence must be weighted accordingly. This
can be explained by the fact that while the generic rule is
trained by all the different matching inputs, the concept rep-
resented by a specific rule is an unadulterated version of the
original. It can also be related to the idea of underfitting
(generic rule) and overfitting (specific rule).

4.3 Inclusion function vs rule probability
We now turn our attention to the other important quan-

tity of the mixture model namely the probability of a rule
being included as an expert given by P (z). This quantity is
the probabilistic equivalent of the inclusion function of UCS.
As we train the mixture of experts we can observe P (z) for
some of the experts tends to zero which effectively amounts
to removing that expert from the mixture. Furthermore, the
rule probability term helps an MOE adapt to different noise
levels in the training examples. When the noise level is low
an MOE will favour specialised rules over generic ones due to
higher confidence in predictions, but as the noise increases
the specific rules become poor predictors of the class and
then the probability distribution of the rules tends to favour
generic rules. UCS lacks this flexibility due to its impov-
erished representation of the inclusion function. A partial
solution to this problem lies in having different numerosities
for the individuals of the population. This would provide
a weighted averaging of fitnesses instead of an unweighted

sum of fitness. The numerosity of an individual is deter-
mined by a stochastic GA and hence is not amenable to a
principled analytical treatment. However, empirical results
in [1] points to correlation between the numerosity of an in-
dividual, the generality of its condition and its fitness. This
might then be able to provide a much richer representation
of the inclusion function.

5. RELATED WORK
The probabilistic formulation of UCS as a mixture of ex-

perts is closely related to the work in [4] although, in con-
trast to [4], we have provided a more robust analytical link
between UCS and MOE by comparing the constituents of
the two classification systems in Section 4. In [4] the prob-
abilistic model is again a mixture of experts obtained by
treating the rules as hidden variables and factorising the
joint probability of the input and class variables as a sum
over the hidden variables. However, the probabilistic model
used in [4] is different from Eq. (3) in that the probability
of the rule is conditioned on the input rather than being
the other way around. This difference, though subtle, re-
sults in complicated learning rules for the parameters of the
model. Specifically in [4], P (z|x) is modeled by a softmax
function with complicated training rules for the parameters.
Another advantage of factorising the joint probability as in
Eq. (3) is that the rule probability P (z) acts as a natural
measure of goodness for a rule and does not need any com-
plicated model selection routines (chapter 7 of [4]) to obtain
the optimal rule combination.

6. EVALUATION
In this section we study the properties of the probabilistic

model using some empirical evaluations and compare it with
the behaviour of UCS. As mentioned in earlier sections, we
have switched off the GA in the UCS and include all the
condition-class combinations in the population of UCS.

In the first experiment we demonstrate the working of
the mixture of experts using a simple example of the mux-3
dataset. The Mux-3 problem involves determining the class
of 3 bit strings with the most significant bit standing for the
address bit and the rest of the two bits for data. The class of
a bit string is decided by the value of the data bit addressed
by the address bit. With 3 bit strings there are M = 27
possible rules in the global ruleset S. These are then used
as the experts and are trained using all possible bit combi-
nations and their classes. The trained mixture of experts is
displayed in Fig. (4(a)). The first 3 columns denote the bits
of the rule with a black representing bit 0, white represent-
ing 1 and grey #. The last column in the figure stands for
the class probability of each rule and the rules themselves
have been sorted according to the decreasing probability of
their occurrence (given by P (z)). We can see from the last
column of the figure that the class probabilities have been
learned accurately for each rule. One of the advantages of
using a probabilistic formulation is that when we learn the
parameters of the mixture model the probabilities of some
of the rules tend to zero indicating that these rules can be
removed from the population. This is demonstrated in Fig.
(4(b)) where the probabilities of the 27 rules of the mux
problem have been plotted and some of them are seen to
approach zero.

In the next experiment, we analyse the effect of noise on

1191

R
ul

es

bit 1 bit 2 bit 3 class probability

5

10

15

20

25

(a) The learned rules and the class probabilities for a
mux-3 dataset

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1
 0

 1

1
 1

 0

0
 0

 1

0
 1

 0

0
 0

 #

0
 1

 #

1
 #

 0

1
 #

 1

 0

 0

 1

 1

1
 0

 0

1
 1

 1

0
 0

 0

0
 1

 1

 #

 0

 0

 #

 1

 #

 #

 1

 0

 1

 1

 0

0
 #

 1

1
 0

 #

1
 1

 #

0
 #

 0

0
 #

 #

 #

 #

1
 #

 #

R
ul

e
pr

ob
ab

ili
ty

 P
(z

)

(b) The probabilities of the rules learned

Figure 4: Demonstration of MOE learning mux-3 rules

the performance of the classifiers. We use the Mux-3 dataset
which consists of 8 possible instances. We take all the 8
instances and replicate them 10 times to obtain a training set
of size 800. The test data consists of the original 8 instances
of Mux. Noise is modelled in the problem by choosing a
random instance of the training data and flipping its class.
The number of instances whose class is flipped is gradually
increased from 0 to 800 thus corresponding to an increase in
noise in the system. Here we have defined noise as possible
conflicts in class labels between two instances of the same bit
strings. At each noise level both the learners are trained on
training data and tested on the test data. The performance
of the classifiers are measured using two different criteria.
Firstly we use the conventional classification accuracy to
measure the percentage of correctly classified instances in
the test set. The second measure is termed as the class
ratio. This is the ratio of support for class 1 and support for
class 0. For the classifiers if the support for class 1 is given
by S1(x) and for class 0 as S0(x) then the class of x is given
by -

Class(x) =

(
0 if S1 < S0,

1 if S1 ≥ S0

(10)

and the class ratio is defined as -

class ratio(x) =
min (S1(x), S0(x))

max (S1(x), S0(x))
(11)

From the equation, we can see that the class ratio measures
the margin of separation of the two classes by the classifier.
Maximum uncertainty corresponds to class ratio = 1 while
minimum uncertainty corresponds to class ratio = 0. We
use this quantity to compare the two classifiers. The class
ratio and the accuracies of the two classifiers are plotted as
a function of noise in Fig. (5(a)). As the noise increases
both the classifiers start making mistakes but we find that
MOE is able to tolerate more noise as compared to UCS. It
must be noted that due to the construction of the training
data as we cross the 50% mark for the noise, the problem
becomes a mirror symmetry of the original problem and in

the case of 100% noise the training data is just the comple-
ment of the original problem. Hence we have restricted the
graphs to “maximum” noise of 50%. The significant aspect
of the result, averaged over 10 randomised train-test splits
illustrated in Fig. (5(a)), is the evolution of the class ratio.
We find that for the MOE, class ratio increases with noise
and reaches a maximum when the noise is at its maximum
at the 50% mark. The performance of UCS is much worse
and is hardly able to adapt to the noise levels. This differ-
ence in performance can be mainly attributed to the prob-
abilistic formulation and dependent learning of the mixture
model as explained in Section 4.2. To further illustrate the
internal workings of an MOE, Fig. (5(b)) plots the average
rule probability grouped according to the generality of rules.
There are four plots in the figure with one corresponding to
the most specific rules which do not have any # in them,
another one corresponds to rules with 1# in them and so
on. In Fig. (5(b)), as the noise increases, the specific rules
become less accurate and consequently the weight given to
them by the rule probabilities decrease and more generic
rules are favoured. On the other hand, effect of noise on
UCS is modulated by the parameter v that we had earlier
set to 1. In Fig. (6) we have plotted the class ratio of UCS
for different values of v for varying noise levels. We can see
that at high noise levels a low value of v is optimal and for
low noise, a high value of v. Therefore, to obtain an optimal
UCS classifier the v parameter must be manually tuned in
accordance with the noise levels in the training data. This
is a cumbersome process when compared to an MOE which
adjusts its parameters automatically according to the level
of noise in the data.

In the final experiment, we look at the effectiveness of a
probabilistic representation of the inclusion function in an
MOE and compare it with that of UCS. In this experiment
we make use of mux-6 dataset. We generate all possible bit
strings of length 6 and its corresponding classes. We then
split this into training and testing datasets. A mixture of
experts is trained with the training data and the perfor-
mance measured on the test data. A UCS is constructed

1192

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of flipped class labels

A
cc

ur
ac

y/
R

at
io

 o
f c

la
ss

 s
up

po
rt

s

MOE class ratio
UCS class ratio
MOE accuracy
UCS accuracy

(a) Comparison of performance of MOE and UCS at dif-
ferent noise levels.

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fraction of flipped class labels

M
ea

n
ru

le
 p

ro
ba

bi
lit

y
P

(z
)

0 #

1 #

2 #

3 #

(b) Evolution of rule probabilities with noise levels.

Figure 5: Effect of noise on learning

from all the rules of the rule superset S and trained on the
same training data and tested on the test data. During this
process the GA is switched off so that the population sizes
of a UCS and MOE are the same. Once the training is com-
plete, the deletion heuristic of UCS is used to delete rules
wherein the individuals which take part in the largest correct
sets[1] get higher priority for deletion. After each deletion
the accuracy of the prediction over the test set is measured.
The same procedure is repeated with the mixture of experts
where the probability of the rules is used as the basis for
pruning. The accuracies for the UCS and MOE are shown
in Fig. (7) where the plot corresponding to UCS is marked
UCS(heuristic). Under ideal circumstances, as the quality
of the rules in the population decreases the classification ac-
curacy should fall, but the fall in accuracy should be gradual
and graceful. By comparing the two learning methods we
can see that the decrease in accuracy is much more regular
in MOE than a UCS suggesting the importance of having
a principled measure for the fitness of the rules. This ex-
periment also serves to justify our choice of switching off
the GA during comparisons between UCS and MOE. This
choice was mainly motivated to factor out the effects of a
stochastic learning method like GA and establish a level field
for the learning algorithms. The main objective of a GA is
to evolve populations with maximum fitness. When indi-
viduals are deleted based on their fitness, the population at
any stage would contain the best individuals in them. Such
a population would represent the best that a GA can learn.
The evolution of error using fitness to delete individuals is
shown in Fig. (7) as UCS(fitness). This particular proce-
dure also underperforms when compared to an MOE. For
the purpose of illustration we have also plotted in dashed
line, the evolution of the scaled sum of fitness of the individ-
uals of the population during the deletion process. These ex-
periments strongly support the theoretical analysis that we
have presented in this paper and illustrate the advantages of
a principled probabilistic model for classifier combination.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of flipped class labels

R
at

io
 o

f c
la

ss
 s

up
po

rt
s

v = 1

v = 5

v = 10

v = 20

Figure 6: Effect of parameter v on the class ratio
with noisy data

1193

1400 1200 1000 800 600 400 200 0
0

0.2

0.4

0.6

0.8

1

Population Size

A
cc

ur
ac

y/
T

ot
al

 fi
tn

es
s

MOE

UCS (heuristic)

UCS (fitness)

fitness of pop.

Figure 7: Comparison of UCS and MOE’s pruning
rules on a mux-6 problem. The plot is an average
over 10 different train-test splits.

7. DISCUSSION
In this work, we have developed a novel probabilistic model

to explain the workings of a sUpervised Classifier System.
For the first time a probabilistic model has been developed
that matches the learning rules of UCS closely. The most
significant contribution of this work is summarised in Sec-
tion 4 where each component of UCS has been provided with
a probabilistic counterpart in the mixture of experts model.
Subsequent discussion in Section 4 proves that the MOE
model is a richer formulation of the UCS model and allows
the model to be more flexible as demonstrated through em-
pirical evaluations in Section 6. In this work we have mainly
concentrated on providing a principled probabilistic model
for the supervised classifier system, but we find that the
mixture of experts model is much more generic and pow-
erful than a UCS. One of the drawbacks of MOE is that it
uses all of the rules in S which results in lots of open param-
eters that need to be learned. This results in an increased
space complexity of the system. UCS copes with this situa-
tion by sampling from S using a GA and needs to maintain
only a subset of S. The same strategy can also be used
for a MOE wherein Monte-Carlo sampling methods can be
used to learn the optimal rule probability when the size of
S is large. These are largely practical issues and is not of
much concern in this paper which places emphasis on the
theoretical aspects of the problem.

Supervised classifier system belongs to the family of Learn-
ing classifier systems and derives their rules of learning and
prediction from the members of the family. This paper has
been developed as a first step towards a probabilistic for-
mulation covering the entire gamut of Learning Classifier
Systems including reinforcement learners like XCS and is
not an attempt to improve UCS.

8. REFERENCES
[1] E. Bernadó-Mansilla and J. M. Garrell-Guiu.

Accuracy-based learning classifier systems : Models,
analysis and applications to classification tasks.
Evolutionary Computation, 11(3):209–238, 2003.

[2] Gavin Brown, Jeremy Wyatt, and Peter Tino.
Managing diversity in regression ensembles. Journal of
Machine Learning Research, 6:1621–1650, 2006.

[3] Arthur Dempster, Nan Laird, and Donald Rubin.
Likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, 39(1):1–38,
1977.

[4] Jan Drugowitsch. Design and Analysis of Learning
Classifier Systems. Springer-Verlag, 2008.

[5] Narayanan U. Edakunni and Tim Kovacs. Probabilistic
modeling of UCS : a theoretical study. Technical report,
University of Bristol, 2009.

[6] R. Jacobs, M. I. Jordan, Nowlan. S. J., and G. E.
Hinton. Adaptive mixtures of local experts. Neural
Computation, 3:79–87, 1991.

[7] Tim Kovacs. Genetics-based machine learning. In
Grzegorz Rozenberg, Thomas Bäck, and Joost Kok,
editors, Handbook of Natural Computing: Theory,
Experiments, and Applications. Springer Verlag, 2009.

[8] James Marshall, Gavin Brown, and Tim Kovacs.
Bayesian estimation of rule accuracy in UCS. In
Proceedings of the 2007 GECCO Conference
Companion on Genetic and Evolutionary Computation,
pages 2831–2834, 2007.

1194

