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ABSTRACT
In recent years there have been efforts to develop a prob-
abilistic framework to explain the workings of a Learning
Classifier System. This direction of research has met with
limited success due to the intractability of complicated heuris-
tic training rules used by the learning classifier systems. In
this paper, we derive a learning classifier system from a mix-
ture of experts that is similar to a sUpervised Classifier Sys-
tem (UCS) in terms of its training and prediction routines.
We start by framing the learning model as a mixture of
experts which uses an Expectation Maximisation (EM) pro-
cedure to learn its parameters. The batch updates of the
EM is then converted into online updates and finally into
a GA based sampled online update thus ending up with a
classifier system similar to a sUpervised Classifier System.
In this paper, we show the effectiveness of such a system as
compared to UCS through a series of comparative studies
on test datasets.
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1. INTRODUCTION
Recent research in Learning Classifier Systems(LCS) has

concentrated on deriving a principled probabilistic model for
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LCS [3, 5]. This is in contrast to the largely heuristic ap-
proach that has been pursued within the field of learning
classifier systems. A probabilistic framework for LCS allows
us to formulate more efficient and accurate learning rules
for the learning classifier system in addition to providing a
sound statistical interpretation of the learned model. One of
the recent works in this direction has been the use of Mix-
ture of Experts(MOE) [6] framework to explain the workings
of a sUpervised Learning Classifier System(UCS) [5]. In [5],
authors have borrowed the probabilistic framework of a mix-
ture of experts to explain the different components of UCS.
The model formulated in [5] provides principled probabilistic
rules for training the classifiers but it manages to do it only
by switching off the GA and using the entire set of possible
rules as component classifiers. This approach is not faithful
to UCS and is not efficient in its use of the classifier rules.
In this paper, we extend their approach to overcome the dif-
ficulties with their model and provide a truly comprehensive
derivation of UCS-like learning rules starting from the prob-
abilistic framework of a mixture of experts. The end result
is a probabilistic model with principled learning rules that
combines the space efficiency of UCS with the robustness of
mixture of experts.

In [5], the probabilistic mixture of experts framework was
shown to have close correspondence to various components
of UCS. Specifically, the macroclassifiers in UCS were repre-
sented as latent variables in MOE with the class probability
conditioned on the latent variable serving as the fitness func-
tion. In addition, the probability associated with a latent
variable was used as a measure to decide if the particular
rule can be included in the population of rules. The predic-
tion routine was also shown to be similar to UCS where a
weighted average of the individual predictions of rules was
used to decide the class for a given input pattern. However,
the similarity of MOE with UCS was established by using a
version of UCS in which the GA was switched off with the
entire universe of rules being used for classification. This
approach is not suitable for real world problems where it is
infeasible to store all possible rules in a computer’s mem-
ory. In this paper, we rectify this deficiency by modifying
the training rules of MOE to work with a reduced set of
classifier rules and constructively build up the optimal set
of rules.

This paper is organised as follows : we start with a brief
review of UCS in Section 2 followed by MOE in Section 3. In
Section 4, we derive online updates for MOE and in Section
5 we use stochastic sampling based MOE training updates
to convert the MOE into a UCS-like classifier algorithm.



Finally, in Section 6 we provide an empirical comparison of
GA based MOE with UCS to demonstrate the advantages of
a classifier with a probabilistic formulation over a heuristics
based classifier.

2. UCS
sUpervised Classifier Systems (UCS) [1] is a form of Learn-

ing Classifier System which learns to classify using supervi-
sory signals. This method of classification is inspired by
XCS and borrows a number of learning rules from XCS[7].
A typical UCS system operates in a problem domain that
consists of input string - class tuple where the input string
is a binary string made up of D bits and a class label is an
element of the set {1 . . .K}. The UCS algorithm maintains
a population of rules where a rule is defined as a condition-
action pair. Condition is a ternary string made up of alpha-
bets from {0, 1,#} and action is a class as predicted by that
particular rule. When a binary input string is presented to
the classifier, it triggers the rules whose condition matches
the input. The match is computed as a bit match between
the input and the rule condition with the symbol # match-
ing both 0 and 1. For example, given an input string 001
it would match rules that have conditions 001, 0#1,0##
and so on. The collection of rules that match the input
string form the match set. The match set can be further
partitioned into K disjoint sets corresponding to rules that
advocate one of the K classes. These sets are termed as ac-
tion sets. Each rule is associated with a fitness value that is
proportional to the classification accuracy of the rule. The
support for each class is then computed by taking the mean
of the fitness of each rule in the action set and the class
with the greatest support is output as prediction for the
given input. The crux of UCS, however is the GA algorithm
that samples from the set of rules to build a population of
rules which yields the best classification accuracy over the
training data.

3. MIXTURE OF EXPERTS (MOE)
Mixture of experts [6] as the name suggests is an ensem-

ble of experts whose predictions are combined through a
weighted sum to produce an overall prediction. In [5], it
was established that the prediction rules of UCS are similar
to that of an MOE and is the same as an MOE when we
place restrictions on the correlation between the constituent
experts. While there can be alternative probabilistic formu-
lations of MOE for a Learning Classifier System - [4] and [5]
being two of them, we use the latter one due to its simplicity
of formulation and simple training rules. In this section, we
provide a brief summary of the MOE model as formulated
in [5]. We then extend this model in later sections of the
paper.

A mixture of experts model is best expressed as the like-
lihood of observing a certain data tuple x, c where x is the
input and c the class label. It can be framed as a ran-
dom generative process consisting of a sequence of random
events that finally outputs the observed data. In a mix-
ture of experts model, we assume that there are M experts
which generate the data. The first step in the generative
process is to choose an expert. This process involves a ran-
dom event whose outcome is represented as a multinomial
random variable Z which can take a value from 1 to M . The
probability that a particular expert, say j, is chosen is given

by the probability P (Z = j). Having chosen an expert, this
expert then generates an input binary string x out of the
2D possible strings with probability P (X = x|Z = j) and
chooses a class c out of K possible classes with probability
P (C = c|Z = j). Here X denotes the input random variable
and C the random variable for class label with x and c being
their respective realisations. The probability of an observed
data tuple x, c being generated by an expert j is then given
by :

P (X = x, C = c|Z = j) =

P (X = x|Z = j)P (C = c|Z = j)

(1)

The random variable Z is unobserved and we cannot be
sure of the identity of the expert, hence the probability of
observing the data tuple is the probability that either of the
M experts generated the data and is given by a summation
of the probabilities of data generated by an expert weighted
by the probability of the expert itself :

P (X = x, C = c) =

M∑
j=1

P (X = x|Z = j)P (C = c|Z = j)P (Z = j)
(2)

In a classification task we observe specific realisations of the
input random variables and classes in the form of training
data and we aim to fit a model that would maximise the
joint probability of these events. Specifically, the training
data given by the tuples (x1, c1), . . . (xN , cN ) are realisa-
tions of the random variables (X1, C1) . . . (XN , CN ) and we
associate with each tuple (Xi, Ci) an unobserved random
variable Zi that can take values from 1 . . .M and indicates
the expert responsible for producing the ith data point. As-
suming that the data points are independent and identically
distributed we can express the likelihood of the observed
data as the joint probability of the N events :

P (X1 = x1 . . .XN = xN , C1 = c1 . . . Cn = cN )

=

N∏
i=1

P (Xi = xi, Ci = ci)
(3)

and the log of the likelihood is given by :

L =
∑
i

logP (xi, ci) (4)

=
∑
i

log
∑
j

P (xi|Zi = j)P (ci|Zi = j)P (Zi = j)(5)

where we have omitted the explicit representation of the
random variables Xi, Ci and just denote it by its actual re-
alisations xi, ci.

3.1 Training
Having obtained the log likelihood, we now need to find

the best set of parameter values by maximising the likeli-
hood with respect to the parameters. The parameters in
our model are :

P (Z) : the probability of an expert being chosen prior to
observing the data. In the MOE model, latent variable
Z is associated with the ternary condition string of
the UCS and the probability of these experts can be
interpreted as a measure of the overall usefulness of an
expert in the ensemble.



P (X|Z) : the probability of producing a particular binary
string given an expert. This parameter is fixed and has
a constant value such that it replicates the match op-
eration of a UCS. The conditional probability is given
by :

P (X|Z = j) =

{
2−(no. of # in j) if x matches j,

0 otherwise
(6)

P (C|Z) : the probability of a class label given an expert.

Among these parameters, P (X|Z) is fixed and we need to
learn the optimal values of P (Z) and P (C|Z). Optimal val-
ues of these parameters can be determined by maximising a
surrogate function of the log likelihood given by :

J =
∑
i

∑
j

P (Zi = j|xi, ci) lnP (ci|Zi = j)

+
∑
i

∑
j

P (Zi = j|xi, ci) lnP (xi|Zi = j)

+
∑
i

∑
j

P (Zi = j|xi, ci) lnP (Zi = j) (7)

where P (Zi = j|xi, ci) is the probability that the ith data
point was produced by expert j and is usually termed as
the posterior probability of the expert j. The quantity J
serves as a surrogate for the log likelihood such that max-
imising the surrogate function is equivalent to maximising
the log likelihood[6]. The surrogate function J can be max-
imised by using an EM algorithm which iteratively finds the
optimal values of the parameters by alternating between es-
timating the posterior probabilities given the current value
of the parameters and re-estimating the parameters with the
posterior probabilities kept fixed. The details of the EM al-
gorithm used to estimate the parameters in the MOE are
given in [5]; in this paper we just list the learning updates
for the parameters :

Compute the posterior : In the first step, we compute
the posterior over the latent variables Z as :

P (Zi = j|ci,xi) =

P (ci|Zi = j)P (xi|Zi = j)P (Zi = j)∑
j P (ci|Zi = j)P (xi|Zi = j)P (Zi = j)

(8)

Here we assume that the parameters used to compute
the posteriors are known and constant.

Compute the parameters : In this step we compute the
values of the parameters assuming that the posteriors
are known :

P (C = k|Z = j) =

∑
i P (Zi = j|xi, ci)I(ci == k)∑

k

∑
i P (Zi = j|xi, ci)I(ci == k)

(9)
where I(ci == k) is an indicator function which takes
value 1 when its argument is true else takes on value
0. The probability of an expert in turn is computed
as :

P (Z = j) =

N∑
i=1

P (Zi = j|xi, ci)/N (10)

Eqs. (8), (9), (10) are cyclically repeated till the parameters
converge and we reach a local maximum of the likelihood.
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Figure 1: Illustration of the evolution of the log like-
lihood of the training data during the EM updates.
Also illustrated is the evolution of proportion of the
useful population during learning.

The process of iterative maximisation of the EM algorithm
is illustrated in Fig. (1) where the evolution of log likeli-
hood is shown as an MOE is trained on a typical dataset.
We can see that this value increases monotonically and con-
verges to a local maximum. The guaranteed monotonicity
of EM is the main reason for using it. At the beginning of
an EM the P (Z) values of all the experts are initialised to
the same value thus giving an unbiased starting point to all
the experts, but as the model gets refined with each training
epoch, some of the rules are less effective in prediction and
their corresponding probabilities fall to zero. This leads to
a sparse population as the EM procedure proceeds. This is
illustrated in Fig. (1) where we plot the number of useful
rules in the population. In this plot useful rules are defined
as the first 95 percentile of the population. The percentile
measure R0.95 is computed by measuring the number of ex-
perts with the largest probability which jointly account for
95% of the cumulative probability of P (Z) and is given by :

R0.95 ∈ {1 . . .M} such that

R−1∑
j=1

P (Z = j) < 0.95 with

P (Z = 1) ≥ P (Z = 2) ≥ . . . P (Z = M)

(11)

As we can see from Fig. (1), the population gets sparser with
each EM iteration and finally settles down to a fraction of
the original population size thus retaining only the relevant
rules in the population. This illustrates the role of P (Z) as
a sort of fitness function for the population of rules and will
be used in later sections to select the best individuals in a
population.

3.2 Prediction
In this section we look at the prediction routine for MOE.

The trained MOE model includes parameters that maximise
the likelihood of observed data. When presented with a
previously unseen input point, MOE uses these parameters
to predict the class of the test input. The class of the test



input is decided by comparing the joint probabilities of input
and class evaluated over different classes. The class with the
highest joint probability wins and is output as the prediction
of the classifier. The joint probability of a class k and the
test input xq is computed as :

P (X = xq, C = k) =∑
j

P (C = k|Z = j)learnedP (X = xq|Z = j)P (Z = j)learned

(12)

where P (C = k|Z = j)learned and P (Z = j)learned are the
values of parameters learned by maximising the likelihood
over the training data. The class prediction is then given by
Prediction = argmaxk∈{1...K}P (X = xq, C = k).

In this section, we have summarised the mixture of experts
model as a probabilistic counterpart of UCS. The similarity
of the MOE model to UCS, as derived so far, had already
been demonstrated in [5] but there are still significant differ-
ence in the training paradigm employed in these algorithms.
The differences in the training routines of UCS and MOE
are listed below :

Online learning : The first difference is that UCS uses
an online training routine which learns from a single
data point at a time and discards it after using it.
This reduces the space complexity of the algorithm by
avoiding the need to store the entire data during the
training process. This is in contrast with MOE which
learns from a batch of data points.

Constructive addition of experts : The main contribu-
tion to the space complexity of an MOE algorithm is
the storage of experts. For an input space of binary
strings of length D the total number of ternary string
rules would be 3D. An MOE algorithm stores the
parameters for each of these rules and computes the
optimal values of these parameters. During the EM
process some of the rules are found to be redundant
as illustrated in Fig. (1) thus reducing the number of
parameters, but the worst case space complexity re-
mains O(3D). With increasing values of D, this space
complexity becomes infeasible.

On the other hand, UCS uses a better approach to
storing its experts. It constructively builds the pop-
ulation of experts by sampling the space of 3D rule
space and storing only the useful rules. Specific rules
are sampled from the rule space, the parameters for
these rules are computed and if found useful it is re-
tained, else it is replaced by a more useful rule. This
process of sampling from the rule space builds up the
population incrementally resulting in an efficient space
utilisation.

In following sections we reformulate the EM algorithm of
an MOE to turn it into an online and constructive training
algorithm similar to UCS with same or better space com-
plexity as a UCS.

4. MOE WITH ONLINE TRAINING
In this section we adapt the training rules of the EM al-

gorithm to learn from data in an online fashion. We start
with training updates given by Eq. (9) and Eq. (10) where

the parameter updates are expressed as a function of poste-
rior probability of the experts and sufficient statistics of the
data. To derive the online updates let us index the training
data points by the time of its arrival t. At time t we must
learn from the data tuple xt, ct and the parameter estimates
learned from previous data points denoted as P (C|Z)t−1 and
P (Z)t−1. Having observed the data point xt, ct at time t,
we first compute the posterior distribution of expert j where
∀j ∈ {1 . . .M} :

P (Zt = j|xt, ct) =

P (C = ct|Z = j)t−1P (Xt = xt|Z = j)P (Z = j)t−1∑
j P (C = ct|Z = j)t−1P (Xt = xt|Z = j)P (Z = j)t−1

(13)

We can now use this estimate to update a running statistic
of the data which is subsequently used to update the value
of the parameters. The running statistic for the conditional
class probability is the numerator term of Eq. (9) denoted
here by spt(j, k) :

spt(j, k) = P (Zt = j|xt, ct)I(ct == k) + spt−1(j, k) (14)

where spt(k) is the estimate for class k at time t and P (Zt =
j|xt, ct) is obtained from Eq. (13). The parameter value of
the conditional class probability is then computed as :

P (C = k|Z = j)t =
spt(j, k)∑
k spt(j, k)

(15)

We can derive similar online update for the probability of
the rule (P (Z = j)) by starting out with the batch update
expression for t data points :

P (Z = j)t =

t∑
i=1

P (Zi = j|xi, ci)/t (16)

which can be rewritten as :

P (Z = j)t =

∑t−1
i=1 P (Zi = j|xi, ci)

(t− 1)

t− 1

t

+
P (Zt = j|xt, ct)

t
(17)

= P (Z = j)t−1
t− 1

t
+
P (Zt = j|xt, ct)

t
(18)

= P (Z = j)t−1

+
1

t
[P (Zt = j|xt, ct)− P (Z = j)t−1] (19)

where we have used the definition of P (Z = j)t−1 as∑t−1
i=1 P (Zi=j|xi,ci)

(t−1)
to modify the equation into a recursive

estimate.
The online estimates derived in Eqs. (13) - (19) can be

used to learn the parameters that would incrementally max-
imise the likelihood of the observed data. This way of learn-
ing from a stream of data removes the necessity to store
the training data during learning thus reducing the space
complexity of the training routine. However, this does not
reduce the space complexity of the learned model which still
needs to store the parameters corresponding to the entire
rule space and hence does not scale up with the length of
the input strings. In the next section we transform the on-
line EM learning rules into a sampling based learning such
that the optimal set of rules can be built up incrementally.



5. ONLINE MOE WITH GA BASED TRAIN-
ING

In the preceding sections we have been using learning al-
gorithms that pruned the experts in an ensemble by learn-
ing the usefulness of the rules based on the estimate of the
probability P (Z) for each individual rule in the rule space.
This approach does not scale well with increasing size of rule
space. In this section, we derive a set of learning rules for
MOE such that it can constructively build an optimal sub-
set of the rules and at the same time learn the parameters
of these rule experts.

As we demonstrated in Section 3 through Fig. (1), the
quantity P (Z = j) gives the usefulness of a rule j amongst
M possible rules. Probability given by P (Z) is a discrete
distribution and takes a value between 0 and 1 such that∑

j P (Z = j) = 1. It is possible to represent a discrete
probability distribution as a frequency distribution with the
probability of an expert j given by its relative frequency of
occurrence :

P (Z = j) =
nj∑
j nj

where nj is a positive integer (20)

The term nj used in Eq. (20) is similar to the numerosity
used in traditional Learning Classifier Systems. Similar to
LCS, the numerosity of a classifier expert is proportional
to its usefulness in predicting the classes correctly. The nu-
merosity based representation of P (Z) allows us to impose a
condition of sparsity by bounding the sum of the numerosi-
ties. For instance, by bounding the total numerosity of all
the rules in the population to some quantity, say Q, we are
assured that only a maximum of Q experts with non-zero
probabilities for P (Z) can be represented. This also allows
us to sample from the rule space by varying the values of
nj and computing the likelihood for a particular subset of
the rule space. An addition of a rule from the rule space
into the population would correspond to an increment in its
numerosity and a deletion from the population space would
correspond to a decrement in its numerosity. Through a
series of addition and deletions we can find the optimal dis-
tribution of numerosities and hence the optimal values of
P (Z) for different rules. The effect of this sampling based
approach is that we are able to learn the parameters of the
experts in a population while still restricting the number of
experts in the population.

We can reuse the same updates of the parameters as given
by Eqs. (15) and (19) with the modification that the quantity
M is now defined as the number of experts in the population
which keeps changing in step with the sampling procedure.
Here, we use GA to sample from the space of all possible 3D

conditions. The GA based sampling is directed by its fitness
function defined over the space of conditions. In UCS the
fitness of an individual is proportional to its classification
accuracy whereas in the probabilistic setting we have seen
that the usefulness of a ternary condition is decided by its
probability P (Z) computed by Eq. (19). We now introduce
a new parameter for the fitness of an expert j - F (j) which
is updated as in Eq. (19) :

Ft(j) = Ft−1(j) +
1

t
[P (Zt = j|xt, ct)− Ft−1(j)] (21)

The fitness values computed using the update in Eq. (21) is
proportional to the probability of an expert and indicates its
usefulness. The fitness value in turn can be used to modu-

Algorithm 1 Training routine for the online GA based mix-
ture of experts

for t = 1 to N do
Params : M , P (C|Z), P (Z), nj , F
∀j ∈ {1 . . .M} compute P (Z = j) = nj/

∑
j nj

if
∑

j P (xt|Z = j)P (Z = j) = 0 then
apply covering with xt

end if
for j = 1 to M do

compute P (Zt = j|xt, ct) using Eq. (13)
∀k ∈ {1 . . .K} compute spt(j, k) using Eq. (14)
∀k ∈ {1 . . .K} compute P (C = k|Z = j)t =

spt(j,k)∑
k spt(j,k)

compute Ft(j) using Eq. (21)
end for
if (t− recentGArun) > GAthreshold then

apply crossover with probability χ (refer [2])
apply mutation with probability µ (refer [2])
delete individuals from the population if necessary.
recentGArun← t

end if
end for

late the numerosity of the experts in the population through
sampling. Rules are sampled by adding and deleting experts
as detailed below :

Addition : addition of experts happen through two dif-
ferent operations - covering and crossover/mutation.
When training input string does not match any of
the rules in the population, then the covering oper-
ation is invoked to introduce an expert that would
match the given input string with its class probabil-
ity P (c = 0|znew) = 0.5 denoting total uncertainty.
At frequent intervals of the learning process, GA is in-
voked which then introduces new experts into the pop-
ulation after possibly applying crossover and mutation
to the condition part of the expert rules. The parent
rules for the crossover are chosen based on its fitness.
The covering, crossover and mutation operations are
similar to the ones employed in XCS [2] and UCS [1]
except for the definition of the fitness function.

Deletion : when the number of experts exceed a certain
threshold (

∑
j nj > Populationmaxsize), the deletion

operation is invoked to decrement numerosity of the
experts with the lowest fitness. The deletion opera-
tion thus restores the sum of numerosities to a value
less than the threshold. Here again the fitness of in-
dividuals play a major part to decide the numerosities
of individual experts in the population. The deletion
operation is also the same as in UCS and XCS.

After each run of sampling, the numerosities of the classifiers
get updated and the updated numerosities are used to cal-
culate new values for P (Z) using Eq. (20). The introduction
of numerosities to compute the expert probabilities makes
the MOE training routine similar to UCS. This is clear if we
write down the prediction rule given by Eq. (12) in terms of
numerosities :

P (X = xq, C = k) =

∑
j P (C = k|Z = j)P (X = xq|Z = j)nj∑

j nj

(22)



0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

# training epochs

T
e

s
t 

e
rr

o
r

 

 

MOE−batch
MOE−online

MOE−GA
UCS

Figure 2: Comparison of the classification error on
the test dataset for different learning algorithms.
Each of the curves is an average of the performance
over 10 disjoint train-test datasets.

which is similar to the class support computed by UCS :

Sk(xq) =

∑
j FUCS(j)MUCS(xq, j)nj∑

j nj
(23)

where FUCS(j) is the fitness function defined in UCS and
MUCS(xq, j) is the matching function that takes value 1 if
xq matches condition of rule j else takes a value 0. The
fitness function of UCS used to compute the prediction is
equivalent to the conditional class probability, the match
function corresponds to the match probability and the nu-
merosity serving the same purpose in both the formulations.
This correspondence had already been noted in [5] and the
inclusion of the numerosity term in the prediction extends
this correspondence. The pseudo-code for training the GA
based online MOE is shown in Algorithm 1.

6. EVALUATION
In this section we use sample datasets to compare the

learning characteristics of different learning algorithms de-
veloped in this paper with the UCS algorithm. In our eval-
uations1 we compare the mixture of experts model learning
from a batch of data (MOE-batch) explained in Section 3,
mixture of experts that learns from data using an online
training updates (MOE-online) introduced in Section 4, on-
line mixture of experts with GA based sampling approach
(MOE-GA) developed in Section 5 and UCS as developed
in [1].

In our first evaluation, we compare the performance of
each of the algorithms on a dataset that consists of 6 input
bits with the class being determined by the xor of the first
two bits. The remaining 4 bits are unused and are irrelevant.
Each of the learning models are trained with 48 randomly
chosen data points from this dataset and the remaining 16
data points are used to test the accuracy of prediction of
each of the models. Fig. 2 plots the evolution of the test

1The MATLAB implementation of the evaluations can be
found at http://www.cs.bris.ac.uk/∼nara/
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Figure 3: Comparison of the population sizes
achieved for different learning algorithms. Each of
the curves is an average of the performance over 10
disjoint train-test datasets.

error with the epochs of training. Each epoch of training
consists of a round of training on the training set of data.

We can see that the batch EM algorithm converges first
to a zero error followed by MOE-online, UCS and MOE-
GA. This is in line with our expectations since the batch
algorithm is able to build a robust model with all of the
training data whereas the online algorithms build models
from sparse data in the beginning which causes a bias in
the model learned and then it takes a number of epochs to
reduce this bias. The difference between the convergence
rates of UCS and MOE-GA can be attributed to the nature
of the experts in these systems. In UCS, the experts are
assumed to be independent and has independent learning
rules. The addition and deletion of an expert does not affect
the other experts, but on the downside it would need a lot of
experts to cover the input space completely and produce ac-
curate classification. The MOE-GA on the other hand uses
training rules that produces correlated update rules for the
experts, thus deleting or adding an expert through the sam-
pling process can imbalance the correlations and would need
relearning to reestablish the correlation for a new set of ex-
perts. The advantage of having the correlations is that the
input space is divided amongst the experts efficiently and
thus requires fewer number of experts for achieving compa-
rable performance. This hypothesis is supported by the plot
in Fig. (3), of the number of experts (number of rules with
nj ≥ 1) in the population. We can see that the MOE-GA is
able to achieve a sparser population compared to UCS while
maintaining a zero classification error on the test data.

6.1 Effect of noise
In the next evaluation we compare the performance of the

learning algorithms on datasets with noise. In particular we
evaluate the ability of the different learning methods to es-
timate the generative process responsible for the data. We
use the mux-3 data to evaluate the performance of the learn-
ing methods. The mux-3 data consists of binary strings of
length 3, the first bit of the string is the address bit and
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Figure 4: Comparison of the classification errors ob-
tained on the noisy mux3 dataset. The plots shown
are the average of 10 fold train-test evaluations.

the rest of the bits are the data bits. In a noiseless case,
the class is determined by the data bit which is addressed
by the address bit. In a noisy case, the observed class label
matches the actual class with a probability of p. For ex-
ample, if the binary string is 010, the class label is 1 with
probability p and is 0 with probability 1 − p. For the pur-
pose of the evaluation, we generate 1000 noisy samples and
split them into 10 disjoint train-test datasets. The learning
algorithms are trained on the training data and the error of
these algorithms are evaluated on the test data. An impor-
tant characteristic of the evaluation setup is that the test
data includes noise in it and to produce minimum risk clas-
sifications of the test samples, the learning algorithms must
be capable of estimating the correct value of p. Hence, we
evaluate the learning algorithms under differing values of p
which ranges from 0 (noise-free dataset with complete cer-
tainty) to a value of 0.5 (random class assignments to the
input data) to see if the algorithms are able to deal with the
noise.

We evaluate the performance of the learning methods based
on two different measures - the misclassification error and
the log likelihood of the test data. The former measure is
the commonly used criterion where we measure the classifi-
cation error using the test set. The latter measure is defined
as :

LogLikelihood =
∑

i∈ci=1

log2(P (ci = 1|xi))+∑
i∈ci=0

log2(P (ci = 0|xi))
(24)

The log likelihood measures the confidence of a classifier in
predicting a particular class. For instance, if a classifier pre-
dicts a class with complete confidence (P (c|x) = 1) then
its log likelihood will be 0. If the classifier is completely
uncertain about its prediction (P (c|x) = 0.5) its log like-
lihood will be −1 and if it predicts the wrong class with
complete confidence (P (c|x) = 0) then the log likelihood for
that particular data point will be −∞. An optimal classi-
fier thus maximises this likelihood measure by predicting the
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Figure 5: Comparison of the mean test log likeli-
hood obtained on the noisy mux3 dataset. The plots
shown are the average of 10 fold train-test evalua-
tions

Table 1: Description of the UCI datasets
Dataset # train pts. # test pts. # features/bits
car 1296 432 12
mushroom 6093 2031 51
kr-vs-kp 2397 799 37

correct class with maximum confidence. There is however
a theoretical limit that can be reached when there is noise.
A classifier cannot be expected to perform better than the
theoretical limit.

In Fig. (4) we plot the test error of different learning algo-
rithms on the noisy mux3 dataset for varying values of p on
the x-axis. The noise in the test data set prevents any of the
learning methods to achieve zero test error for p < 1, but
the significant trend of the graph shows that the learning
methods based on the MOE model is able to estimate the
noise in the system better than UCS. The MOE based learn-
ers follow the trend of the “ideal” classifier (a classifier that
knows the actual class labels and the probability p of gener-
ating the class labels) hence demonstrating the superiority of
probabilistic classifiers in making confident predictions. We
further obtain evidence of the difference between UCS and
the MOE models of classification by plotting the mean test
log-likelihoods for each of the p values as shown in Fig. (5).
The plot shows that the UCS clearly departs from the ideal
classifier and all the MOE based classifiers in estimating the
noise levels in the dataset. These results are a confirmation
of the trend witnessed in the experiments conducted in [5].

6.2 Performance on UCI dataset
In our final experiment, we compare the performance of

the algorithms on real world datasets obtained from the UCI
repository. The details of the data are given in Table 1 and
the performance of MOE-GA and UCS are given in Table
2. It must be noted that batch algorithms which uses the
entire set of rules for prediction are not feasible for these
datasets, hence the comparison is limited to MOE-GA and



Table 2: Comparison of MOE-GA with UCS on various UCI datasets. The values in the parenthesis denote
the standard deviation for the mean values given.

Dataset
MOE-GA UCS

Accuracy Likelihood # macro classifiers Accuracy Likelihood # macro classifiers
car 0.93(0.01) -0.41(0.07) 71.6(65.8) 0.94(0.01) -7.08(3.91) 224.1(12.6)
mushroom 0.64(0.02) -0.85(0.02) 295(1.4) 0.67(0.03) -1.08(0.66) 295(1.8)
kr-vs-kp 0.63(0.03) -0.94(0.02) 479.2(4.05) 0.56(0.03) -27.77(5.43) 488.7(5.1)

UCS. The parameters for the GA including the maximum
population threshold were initialised to the same values for
both MOE-GA and UCS. The performance is measured by
splitting the dataset into training data and test data. The
algorithms are trained on the train data and its performance
measured on the test data. The mean of the performance
metrics taken over 10 such train-test splits have been re-
ported in Table 2. The performance of algorithms are again
compared using the metrics of classification accuracy and
the likelihood. For this particular experiment we have mod-
ified the likelihood measure such that log2(0) is truncated
to a high but constant value so as to deal with situations
that would otherwise yield −∞. It is clear from the results
in Table 2 that UCS and MOE-GA have a similar perfor-
mance in terms of its classification accuracy, but there is a
significant difference in the confidence that they attribute to
their predictions. It can be seen from the log-likelihood that
while MOE manages to attribute the right confidence levels
to its predictions, the confidence levels of UCS is worse than
a random classifier that chooses classes with equal proba-
bility. Another significant difference between the two is the
number of macro classifiers each of them utilise to produce
these results. The difference is significant in the car dataset
where MOE is able to achieve a classification performance
at par with UCS while using a significantly lesser number of
rules.

7. DISCUSSION
In this paper, we have seen that a probabilistic model can

be built that has the same characteristics of a sUpervised
Classifier System and enjoys the same advantages of UCS
while being strictly derived from mathematical principles.
This is the first time that a paper has provided a compre-
hensive analogue of an LCS system. The statistical model
of mixture of experts ties the UCS to mainstream machine
learning paradigms that has a lot of research pertaining to
such models of combining experts. We can conclude from
this research that UCS is a special instance of a mixture of
experts that is adapted to learning high dimensional discrete
spaces using sampling to control the space complexity. The
probabilistic model, apart from providing a firm theoretical
ground for deriving training rules also scales up the learning
algorithm to deal with noisy observations as demonstrated
by the experiments in Section 6.

In this work, we have also shown that in cases of a small
input space with sufficiently small D a batch algorithm of
MOE is far better than a GA based online algorithm. This
allows us to decide the optimum learning algorithm to use
depending on the characteristics of the input space. For a
UCS it is not easy to convert from a classification to re-
gression and requires substantial effort in remodifying the
learning updates to cover the continuous targets. For a
MOE model it is fairly trivial to do the same by changing

the probability distribution defined on the output variable
P (C|Z = j). The triviality of these modifications is aided
due to the principled learning rules and the generative model
used to learn from the data.

In future the same probabilistic model can be extended
to provide an overarching framework to the whole family
of Learning Classifier Systems thus unifying the different
versions of the same designed to address different problems.
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