
Boosting as a Product of Experts

Narayanan U. Edakunni
University of Bristol, UK

Gavin Brown
University of Manchester, UK

Tim Kovacs
University of Bristol, UK

Abstract

In this paper, we derive a novel probabilis-
tic model of boosting as a Product of Ex-
perts. We re-derive the boosting algorithm
as a greedy incremental model selection pro-
cedure which ensures that addition of new ex-
perts to the ensemble does not decrease the
likelihood of the data. These learning rules
lead to a generic boosting algorithm - POE-
Boost which turns out to be similar to the
AdaBoost algorithm under certain assump-
tions on the expert probabilities. The pa-
per then extends the POEBoost algorithm to
POEBoost.CS which handles hypothesis that
produce probabilistic predictions. This new
algorithm is shown to have better generaliza-
tion performance compared to other state of
the art algorithms.

1 Introduction

Boosting has been a popular form of ensemble
classification that adaptively builds an ensemble of
weak classifiers to achieve a good classification ac-
curacy. Recently, research on boosting has focussed
on linking the boosting procedure to various es-
tablished machine learning paradigms like additive
models [Friedman et al., 2000], minimization of Breg-
man distance [Collins et al., 2002], entropy projec-
tion [Kivinen and Warmuth, 1999] and gradient de-
scent procedure [Mason et al., 1998]. These alterna-
tive frameworks for boosting provide new insights into
its working which can then be used to extend and im-
prove it. In this paper, we follow a similar line of
research and provide the first ever probabilistic model
of boosting. Here, we develop boosting as a Product of
Experts (PoE) [Hinton, 2002] and derive the learning
updates as a form of incremental model adaptation by
adding new experts to the product. A probabilistic

framework for boosting provides a number of advan-
tages including a simple and well motivated model of
the data. Furthermore, it makes the modeling assump-
tions made in boosting explicit and allows us to seam-
lessly apply boosting across different problem settings
by varying the probabilistic model of the constituent
experts. A probabilistic model of boosting also enables
us to use a plethora of inference techniques like like-
lihood maximization and Bayesian inference to learn
the parameters of the model.

In this paper, we model boosting as a normalized
product of probabilities with the component proba-
bilities being contributed by the experts in the en-
semble. The ensemble of experts is expanded at each
iteration by adding a new expert such that the like-
lihood of the observed data, as predicted by the en-
semble, does not decrease with the addition of an
expert. We show that such a condition of non-
decreasing likelihood at each iteration naturally leads
to a constraint on the parameters of the expert sim-
ilar to that of a weak learning criterion in boost-
ing [Freund and Schapire, 1997, Schapire, 1990]. For
a specific parametrization of the expert probabilities
we show that incremental learning in PoE reduces to
a new variant of the boosting algorithm we call POE-
Boost. We demonstrate the value of a probabilistic
model of boosting by deriving another new variant
of boosting that uses base learners with probabilis-
tic predictions as opposed to binary predictions. Us-
ing empirical evaluations, the new boosting algorithm
is shown to have improved learning characteristics in-
cluding better accuracy and correct levels of confidence
in class predictions as compared to existing boosting
procedures.

2 Boosting

We consider a problem of binary classification where
we are given a training sample consisting of the input-
class tuples (x1, y1) . . . (xN , yN) where each of the in-

puts xi belongs to the domain X and the class labels
can take a value from {−1, 1}. We are interested in
learning the model that relates input and correspond-
ing class label and using this model to predict the class
label of a previously unseen input xq.

A boosting algorithm creates an ensemble of experts
by incrementally adding weak hypotheses to the en-
semble. Each successive weak hypothesis is chosen so
as to minimize a weighted loss function of the data
usually denoted as ε. The boosting algorithm then
assigns a weight α to the weak hypothesis that is pro-
portional to its confidence of predicting the correct
class label. The weights of the correctly classified data
points are then decreased and that of the incorrect
ones increased. These revised weights are then used
to obtain the next weak classifier and the process re-
peats until convergence. There have been a number of
variants of boosting that differ in the loss functions,
the class of weak hypotheses and the way the weights
are assigned. However, in this paper, we use AdaBoost
as a popular instance of the family of boosting algo-
rithms. The AdaBoost algorithm is illustrated in al-
gorithm 1. In this paper, we establish a link between

Algorithm 1 Learning in AdaBoost

Training data : S = ((x1, y1) . . . (xN , yN)).
D1
i = 1

N for i = 1 . . . N .
for j = 1 to M do

Define εj =
∑
i:hj(xi)6=yi D

j
i .

Obtain a hypothesis hj that minimizes εj and sat-
isfies the condition εj ≤ 1/2.

αj = 1
2 log

(
1−εj
εj

)
.

Dj+1
i = e(−yihj(xi)αj)Dj

i .

Dj+1
i =

Dj+1
i∑
iD

j+1
i

.

end for
Prediction H(xq) = sign

[∑
j αjhj(xq)

]
.

an incremental learning strategy in PoE and boost-
ing by showing that under certain parametrizations of
the expert probabilities the learning algorithm of PoE
has a structure identical to algorithm 1. We start by
defining the framework of product of experts.

3 Product of Experts model

A Product of Experts model [Hinton, 2002] formulates
the probability of a data point as a normalized prod-
uct of probabilities with each probability being con-
tributed by a different expert. When dealing with the
problem of classification, we can express the proba-
bility of a class label conditioned on the input as a

product of conditional class probabilities as shown:

P (Y = y|X = x, h1 . . . hM) =∏M
j P (Y = y|X = x, hj)∏M

j P (Y = y|X = x, hj) +
∏M
j P (Y = y|X = x, hj)

(1)

where X is the random variable corresponding to the
input, x is a particular realization of X, Y the ran-
dom variable corresponding to the response, y its re-
alization, y the complement class of y and h1 . . . hM
the experts. We find from eq. (1) that the ensem-
ble probability P (Y = y|X = x, h1 . . . hM) is ex-
pressed as a normalized product of the expert prob-
abilities P (Y = y|X = x, hj) such that P (Y = y|X =
x, h1 . . . hM) + P (Y = y|X = x, h1 . . . hM) = 1. We
can now recursively define the probability of an ensem-
ble in terms of the probability of the current expert
and the probability of the previous ensemble as

P (y|x, h1 . . . hM) = P (y|x, hM)P (y|x, h1 . . . hM−1)/

[P (y|x, hM)P (y|x, h1 . . . hM−1)+

P (y|x, hM)P (y|x, h1 . . . hM−1)]

(2)

where we have dropped the random variables from the
formulation for notational convenience. When we add
a new expert, the recursive definition of eq. (2) al-
lows us to update the probability of an existing en-
semble using the probability of a newly added expert.
In later sections, we will use the recursive definition
to develop routines for incremental expansion of the
ensemble with simple update rules for the probability
of the ensemble.

The probabilistic framework of PoE offers a simple
model of the observed data, in which the probability
of a data point is obtained by combining the opin-
ions of a set of experts. PoE does not specify how the
experts are generated, although there are principled
probabilistic tools to fit the experts to the observed
data.

Our aim is to use PoE to model the boosting approach
to learning, where experts (weak learners) are gener-
ated incrementally. AdaBoost, for example, adds an
expert which minimizes the error function in algorithm
1. Here, we will add experts to PoE incrementally, us-
ing a probabilistic approach. This approach views the
PoE as a model of the observed data and hence new
experts should be selected to improve the fit of the
PoE to the data. The criteria for judging the fit is
the likelihood of the observed data conditioned on the
PoE model. Hence we would like to obtain an itera-
tive procedure that increases the likelihood of the data
with every addition of an expert.

3.1 Constraint on an expert

We next derive the condition on a newly added expert
that would ensure that the likelihood of the observed
data does not decrease with the addition of a new ex-
pert to the ensemble. We then refine this condition
to show that this constraint on the expert leads to
a weak learning condition on the expert akin to the
one derived in [Freund and Schapire, 1997] for boost-
ing, thus establishing part of the relation between PoE
and boosting.

We start with the conditional likelihood of the IID
data given by

P (y1 . . . yN |x1 . . . xN , h1 . . . hj) =

N∏
i=1

P (yi|xi, h1 . . . hj).

(3)
The corresponding likelihood for a PoE with j − 1 ex-
perts is given by

P (y1 . . . yN |x1 . . . xN , h1 . . . hj−1) =

N∏
i=1

P (yi|xi, h1 . . . hj−1).

(4)

With every addition of an expert we would like the
likelihood of the observed data, conditioned on the en-
semble, to increase or remain the same. This condition
on the likelihood can be expressed mathematically as

P (y1 . . . yN |x1 . . . xN , h1 . . . hj)
≥ P (y1 . . . yN |x1 . . . xN , h1 . . . hj−1).

(5)

The inequality in eq. (5) leads to a constraint on the
probabilities of the added expert (refer to appendix A
for the derivation) expressed as

N∑
i=1

Dj−1
i

P (yi|xi, hj)
≤ 2 (6)

where Dj−1
i =

P (yi|xi,h1...hj−1)∑N
i=1 P (yi|xi,h1...hj−1)

such that∑
iD

j−1
i = 1. Examining the constraint in eq. (6),

we find that the constraint is expressed as a bound on
the weighted sum of the reciprocals of the probabili-
ties of the observations as assigned by the newly added
expert. The weight Dj−1

i , in turn, is proportional to
the probability that the ensemble with j − 1 experts
made a mistake in predicting the ith data point.

We note that if the constraint in eq. (6) is valid, adding
experts iteratively results in the guarantee of a non-
decreasing likelihood. Furthermore, weights Dj

i can

be computed from the previous weights Dj−1
i in each

iteration by using the recursive definition of PoE given
in eq. (2). We start with the definition of Dj

i :

Dj
i =

P (yi|xi, h1 . . . hj)∑N
i=1 P (yi|xi, h1 . . . hj)

. (7)

Using eq. (2) we can simplify eq. (7) into

Dj
i =

P (yi|xi, hj)P (yi|xi, h1 . . . hj−1)/Qji∑N
i=1 P (yi|xi, hj)P (yi|xi, h1 . . . hj−1)/Qji

=
P (yi|xi, hj)D

j−1
i /Qji∑N

i=1 P (yi|xi, hj)D
j−1
i /Qji

(8)

where Qji is the normalization term given by

Qji = P (yi|xi, hj)P (yi|xi, h1 . . . hj−1)

+ P (yi|xi, hj)P (yi|x, h1 . . . hj−1).
(9)

We can now iteratively add an expert to the ensemble
satisfying the constraint given in eq. (6) and update
the weights on the data as given by eq. (8). This results
in a procedure as illustrated in algorithm 2. Algorithm

Algorithm 2 Incremental learning in PoE

Training data : S = ((x1, y1) . . . (xN , yN))
D1
i = 1/N for i = 1 . . . N .

for j = 1 to M do
Obtain a hypothesis hj such that∑N
i=1

Dji
P (yi|xi,hj) ≤ 2

Dj+1
i = P (yi|xi, hj)D

j
i

Dj+1
i =

Dj+1
i∑
iD

j+1
i

end for
H(xq) = sign [P (Yq = 1|xq, h1 . . . hM)

−P (Yq = −1|xq, h1 . . . hM)].

2 is broadly similar to algorithm 1 in its structure but
differs significantly in the details. In the following sec-
tions, we show that the boosting algorithm as exempli-
fied by algorithm 1 is just a specific case of the generic
algorithm given in algorithm 2.

4 Boosting as incremental learning in
PoE

We can derive the boosting updates given in algorithm
1 from the incremental learning that we had formu-
lated in the previous section by assuming a particular
parametrization for the expert probabilities. In this
section, we start with a specific parametrization for
the expert probability and derive the weak learning
criteria as a specific instance of the constraint given in
eq. (6). We then derive the values for the weights α
on the hypothesis and the update rules for the weights
on the data Di used in boosting.

Let us assume that the conditional probability con-
tributed by an expert is

P (Y = y|X = x, h(x)) =

P (Y = y|Z = y)P (Z = y|x, h)+

P (Y = y|Z = y)P (Z = y|x, h)

(10)

where Z is a random variable representing the predic-
tion made by hypothesis h and hence takes values from
{−1, 1}. In eq. (10), the probability of an expert pre-
dicting a particular label is given as a weighted combi-
nation of the probabilities of the predictions of h. The
weights P (Y = y|Z = y) and P (Y = y|Z = y) are the
probabilities that the observed class label is the same
as the one predicted by the hypothesis or different from
the prediction of the hypothesis. These probabilities
can thus be interpreted as an error probability asso-
ciated with the hypothesis that is independent of the
input and distorts the predictions of the hypothesis.
We further assume that the distortions are symmetric
resulting in the expression

P (Y = −1|Z = 1) = P (Y = 1|Z = −1) = Pe (11)

where we have represented the error probabilities us-
ing a constant parameter Pe to signify that it is in-
dependent of the input and is a parameter associated
with a particular hypothesis. Furthermore, to derive
the weak learning condition we also assume that the
hypothesis predicts with perfect confidence :

P (Z = y|x, h), P (Z = y|x, h) ∈ {0, 1}. (12)

Substituting the error probability given in eq. (11) in
eq. (10) we obtain

P (Y = y|X = x, h(x)) =

(1− Pe)(1− P (Z = y|x, h)) + PeP (Z = y|x, h).

(13)

We can now substitute the expert probability as given
by eq. (13) into the constraint for expert j as given in
eq. (6) to get

N∑
i=1

Dj−1
i

(1− P j
e)(1− P (Z = yi|x, hj)) + P j

eP (Z = yi|x, hj)
≤ 2

(14)

where P je is the error parameter of the jth expert. We
note that P (yi|x, h) = 1 for all the data points where
h(xi) 6= yi and P (yi|x, h) = 0 for the data points
where h(xi) = yi. Using this condition, we can sim-
plify eq. (14) as

∑
i:hj(xi)=yi

Dj−1
i

(1− P je)
+

∑
i:hj(xi)6=yi

Dj−1
i

P je
≤ 2. (15)

Making use of the relation
∑N
i=1D

j−1
i = 1 we can

simplify eq. (15) to obtain the constraint on P je as

εj ≤ P je ≤
1

2
(16)

where εj =
∑
i:hj(xi)6=yi D

j−1
i . The constraint in

eq. (16) implies εj ≤ 1
2 which translates to a con-

straint on the base hypothesis of an expert. The

base hypothesis chosen at each iteration of the algo-
rithm must be such that the sum of weights of the
data points on which it makes an error in predic-
tion is less than 1/2. This constraint is the popular
weak learning criterion of boosting as formulated in
[Freund and Schapire, 1997]. Hence, we started with
the generic constraint on the expert of a PoE as defined
in eq. (6) and derived a constraint on the base hypothe-
sis when the probability of an expert is parametrized as
in eq. (10) and satisfies assumptions given by eq. (11)
and eq. (12). This demonstrates one part of the simi-
larity between PoE and boosting.

In the next step, we reparametrize Pe to derive the
weights on the base hypothesis α and the updates for
the weights D on the data points. We previously de-
rived a constraint on Pe in eq. (16) which allows Pe to
take a range of values from ε to 1/2. We can be greedy
about our choice of Pe and assign maximum confidence
to our expert by choosing the minimum value for Pe.
Hence, in our algorithm we choose P je = εj . Now, we
can reparametrize P je as

P je =
e−αj

(e−αj + eαj)
. (17)

Setting P je = εj in eq. (17) and solving for αj we get

αj =
1

2
log

1− εj
εj

. (18)

Next, we derive the updates for the data points Dj−1
i .

The update forDi as given in eq. (8) can be modified to
our specific model by plugging the value of P (yi|xi, hj)
in eq. (8). The value of P (yi|xi, hj) can be computed
from eq. (13) as

P (yi|xi, hj) =

P je (1− P (Z = yi|xi, hj)) + (1− P je)P (Z = yi|xi, hj).
(19)

Using the assumptions in eq. (12) about P (Z =
yi|xi, hj) we can rewrite P (yi|xi, hj) as

P (yi|xi, hj) =

{
P je if hj(xi) = yi

(1− P je) if hj(xi) 6= yi.
(20)

Substituting the value of P je as given by eq. (17) we
obtain

P (yi|xi, hj) =

e−αj

(e−αj+eαj)
if hj(xi) = yi

eαj

(e−αj+eαj)
if hj(xi) 6= yi

=
e(−yihj(xi)αj)

(e−αj + eαj)
(21)

where we have used the relation yi, hj(xi) ∈ {−1, 1} to
simplify the expression for P (yi|xi, hj). Correspond-
ingly, P (yi|xi, hj) is given by

P (yi|xi, hj) = 1− P (yi|xi, hj) =
e(yihj(xi)αj)

(e−αj + eαj)
(22)

We can now use the value of P (yi|xi, hj) to update the

weights Dj−1
i using eq. (8) as :

Dj
i =

e(−yihj(xi)αj)Dj−1
i /Qji∑N

i=1 e
(−yihj(xi)αj)Dj−1

i /Qji
(23)

where Qji = e(yihj(xi)αj)P (yi|xi, h1 . . . hj−1) +
e(−yihj(xi)αj)P (yi|x, h1 . . . hj−1).

In the final step we derive the rules of prediction for
the boosting procedure that we have developed. The
prediction in a PoE is based on the probability as-
signed to a class label given the test input xq. The
probabilities of different class labels are given by

P (Yq = 1|Xq = xq, h1 . . . hM) =

∏M
j=1 P (1|xq, hj)

Rq

P (Yq = −1|Xq = xq, h1 . . . hM) =

∏M
j=1 P (−1|xq, hj)

Rq
(24)

where Rq =
∏M
j=1 P (1|xq, hj) +

∏M
j=1 P (−1|xq, hj).

The class label for an input is decided by the greater
of the two probabilities given in eq. (24). We can al-
ternatively express the class label yq corresponding to
xq as

yq = sign [P (Yq = 1|Xq = xq, h1 . . . hM)

−P (Yq = −1|Xq = xq, h1 . . . hM)] .
(25)

We can substitute the values of the expert probabilities
as given in eq. (22) and eq. (24) in eq. (25) to obtain

yq = sign

∏
j

e(hj(xi)αj)

(e−αj + eαj)
−
∏
j

e(−hj(xi)αj)

(e−αj + eαj)

= sign

[
e(
∑
j αjhj(xi)) − e(−

∑
j αjhj(xi))

]
= sign

∑
j

αjhj(xi)

 . (26)

The updates derived for the boosting algorithm have
been summarized in algorithm 3 which we name as
the POEBoost.DS algorithm where DS stands for the
Discrete nature of the predictions made by the base
hypothesis and Symmetric error probabilities Pe. We
find that POEBoost.DS is similar to AdaBoost to a
large extent including the weak learning constraint on
the hypothesis and the learning rules for α. The only
difference between the two algorithms lie in the way
that D gets updated.

Algorithm 3 Learning POEBoost.DS

Training data : S = ((x1, y1) . . . (xN , yN)).
D1
i = 1

N .
for j = 1 to M do

Define εj =
∑
i:hj(xi)6=yi D

j
i .

Obtain a hypothesis hj that minimizes εj and sat-
isfies the condition εj ≤ 1/2.

αj = 1
2 log

(
1−εj
εj

)
.

Dj+1
i ∝ e(−yihj(xi)αj)Dj

i (refer eq. (23)).

Dj+1
i =

Dj+1
i∑
iD

j+1
i

.

end for
Prediction H(xq) = sign

[∑
j αjhj(xq)

]
.

5 POEBoost.CS

In this paper, we had derived a boosting procedure
with PoE as the underlying probabilistic model. The
derived boosting procedure, under certain assump-
tions, evolved into a procedure which is remarkably
similar to AdaBoost. There are deeper connections
between POEBoost.DS and other conventional boost-
ing techniques like AdaBoost and LogitBoost but to
explore the entire depth of the relations is not possible
within the scope of this paper.

Establishing a probabilistic model for boosting and de-
riving a basic boosting algorithm like POEBoost.DS
provides new insights into the working of boosting and
provides a statistical tool in the form of the PoE model
to study the system in detail. However, the effec-
tiveness of such a generic probabilistic model of PoE
and its associated incremental learning rules can be
best demonstrated by extending it to different learn-
ing problems. As a case study, we extend the PoE
model to a scenario where the base hypothesis pro-
duces a continuous value for prediction, specifically
we will deal with the case where the base hypothe-
sis provides a probabilistic prediction of the class la-
bel. Using this case study we would like to demon-
strate the ease with which such models can be derived
from the basic PoE model and the learning rules for-
mulated. We name this algorithm as POEBoost.CS,
standing for Continuous predictions of the hypothesis
and Symmetric error probability.

In this section, we proceed in the same manner as
we derived the boosting algorithm for POEBoost.DS
- by deriving the weak learning assumption and us-
ing that to learn the parameters of the base hy-
pothesis and the error probability. Real AdaBoost
[Schapire and Singer, 1998] is the extension of Ad-
aBoost that handles hypotheses with real valued pre-
dictions. However, this algorithm lacks a proper mo-
tivation other than that of an extension to handle

real valued predictions. It needs alternate techniques
to handle multiple labels and multiclass classification
which is naturally compatible with the framework of
PoE. We also demonstrate that POEBoost.CS is com-
petitive in its generalization ability when compared to
Real AdaBoost on benchmark datasets.

5.1 Constraint on the expert

We start by deriving the constraint on the expert un-
der the conditions :

P (Z = y|x, h), P (Z = y|x, h) ∈ [0, 1] (27)

P (Y = −1|Z = 1) = P (Y = 1|Z = −1) = Pe. (28)

Using these conditions, we reformulate the constraint
given in eq. (6) as

N∑
i=1

Dj−1
i

P (yi|xi, hj)
≤ 2 (29)

where P (yi|xi, hj) = (1 − Pe)(1 − P (Z = y|x, h)) +
PeP (Z = y|x, h). We can substitute the value of
P (yi|xi, hj) in the inequality of eq. (29), but the con-
tinuous values taken by the predictions of the base
hypothesis prevent us from obtaining a closed form
constraint for Pe. We can, however, relax the con-
straint by finding a piecewise linear upper bound for
the expression in eq. (29) and constrain it to be less
than 2 (refer to appendix B for details). The modified
bound is then given by

N∑
i=1

Dj−1
i

P (yi|xi, hj)

≤
∑
i:C1

Dj−1
i

[
2

(
2− 1

Pe

)
P (Z = yi|xi, hj) +

1

Pe

]

+
∑
i:C2

Dj−1
i

[
2

(
1

1− Pe
− 2

)
P (Z = yi|xi, hj)

+

(
4− 1

1− Pe

)]
≤ 2.

(30)

where i : C denotes the set of all indices i that satisfy
the condition given by C. In eq. (30) the conditions
C1 and C2 are given by P (Z = yi|xi, hj) ≤ 0.5 and
P (Z = yi|xi, hj) > 0.5 respectively. Now, we can solve
for Pe to obtain

εcj ≤ Pe ≤
1

2
(31)

where εcj is given by

εcj =

[∑
i:C1

Dj−1
i (2P (Z = yi|xi, hj)− 1)

]
/

[
2
∑
i:C1

Dj−1
i (P (Z = yi|xi, hj)− 1)

−2
∑
i:C2

Dj−1
i P (Z = yi|xi, hj) + 1

]
.

(32)

Table 1: Details of datasets used. The letters dataset
was converted to a binary classification by only using
data corresponding to letters A and B.

Name # data pts. # features
Ionosphere 351 33
Spambase 4601 56
Breast cancer 569 30
Pima Indians diabetes 768 8
Letter 1555 16
Wine quality 1599 11
Catalysis (Train) 873 617
Catalysis (Test) 300 617

The optimal values for P je and hj are chosen such that
Pe is minimized. The settings for which P je is mini-
mized are P je = εcj and hj = argminh(εcj). The update
for D is given by eq. (8) and the prediction rule by
eq. (26). This set of learning rules defines the POE-
Boost.CS boosting algorithm. We next compare the
efficacy of this algorithm with that of related algo-
rithms in the rest of the paper.

6 Evaluation

In this section, we evaluate the generalization perfor-
mance of POEBoost.CS with that of Real AdaBoost
[Schapire and Singer, 1998]. The POEBoost.CS1 as-
sumes that the base hypothesis predicts with the prob-
ability of a class rather than just the prediction of the
class label. Other boosting algorithms that minimize a
loss function of negative log likelihood like LogitBoost
[Friedman et al., 2000] or GBM [Friedman, 2001] can
also handle base classifiers with probabilistic predic-
tions. However, these algorithms are designed to min-
imize a squared loss thus requiring a regression algo-
rithm as a base classifier. This is different from the
requirements for the base classifier of our boosting al-
gorithm and hence we do not include the logistic re-
gression based boosting algorithms in our comparison.

In typical boosting algorithms, decision stumps are
used as base classifiers. Decision stumps can provide
probabilistic predictions but they are typically domain
partitioning algorithms that assign the same probabil-
ity to all points lying to one side of the decision bound-
ary. However, in more realistic probabilistic classifiers
different data points are assigned different confidence
levels depending on their distance from the decision
boundary. Hence, we use a univariate logistic regres-
sor as our base classifier which assigns probability of
a class to an input depending on its distance from the
decision boundary. At every round of hypothesis se-
lection, a logistic regression is trained on an input fea-

1Code available at http://www.cs.bris.ac.uk/∼nara/

Table 2: Comparison of boosting algorithms with figures in bold indicating better performance.

Name Real AdaBoost POEBoost.CS
Test accuracy Test likelihood Test Accuracy Test likelihood

Ionosphere 0.78(0.03) -0.52(0.05) 0.85(0.03) -0.41(0.05)
Breast cancer 0.84(0.04) -0.51(0.02) 0.96(0.02) -0.12(0.03)
Spambase 0.78(0.01) -0.65(0.00) 0.86(0.01) -0.39(0.01)
Pima Indians diabetes 0.71(0.03) -0.63(0.02) 0.73(0.03) -0.56(0.03)
Letter 0.54(0.02) -0.59(0.02) 0.94(0.01) -0.15(0.02)
Wine quality 0.96(0.01) -0.16(0.02) 0.96(0.01) -0.16(0.02)
Catalysis 0.63 -0.64 0.68 -0.59

ture such that it minimizes a certain error criteria.
At each iteration, the feature with the least error is
chosen to build the logistic regression. We learn the
parameters of the logistic regression by using a sin-
gle step gradient descent on the error. We use the
same algorithms and the same settings for the base
classifiers for both the boosting algorithms to make
a fair comparison. The only difference between the
base classifiers used in these algorithms are the cri-
teria that is used to measure the error. The algo-
rithm of POEBoost.CS uses εc as the error which is
minimized to choose the best base classifier whereas
Real AdaBoost uses −

∑
iDiP (yi|xi, hj) as the error

to minimize [Schapire and Singer, 1998].

We compare the two algorithms on the UCI datasets
and the catalysis dataset obtained from the predictive
uncertainty challenge.2 The details of the data are
given in table 1. The catalysis dataset consists of dis-
tinct training and validation data. Here we used the
validation data to measure the test error due to the
unavailability of the actual test data for catalysis. For
the UCI datasets, the results were obtained after run-
ning the algorithms on 10 train-test splits with 75%
of the data used for training and the rest for testing.
The results reported are the average of these 10 exper-
iments. In all these experiments 200 base classifiers
were used during the learning phase. The test error
and the likelihood are given in table 2.

The results in table 2 demonstrate the efficacy of the
POEBoost.CS algorithm with respect to the state of
the art boosting algorithm for confidence-rated predic-
tions. The POEBoost.CS algorithm is seen to predict
accurately with optimal confidences than its competi-
tor in all of the data sets except in the wine dataset
where both the algorithms show equal accuracy and
confidence. The superiority of POEBoost.CS arises
from the fact that boosting is framed as a probabilis-
tic model which allows us to formulate a tight bound
for the increase in the likelihood and maximizing this
bound leads to a model that fits the data better.

2http://predict.kyb.tuebingen.mpg.de/pages/home.php

7 Discussion

We have presented a novel interpretation of boost-
ing algorithms as a Product of Experts probabilis-
tic model. The sequential distribution updates in
the boosting procedure were explained as an itera-
tive model selection process, adding experts such that
the conditional likelihood is increased at each step.
The model we have presented can incorporate arbi-
trary probabilistic models as the experts, including
real-valued predictions naturally. It can also handle
learning problems other than classification by choos-
ing the appropriate probability model for the experts.
The updates are derived naturally from a constraint on
the likelihood (eq. (6)), defining a family of algorithms
that satisfy this condition. In a particular special case,
and when using experts of the form in eq. (10), the
model reduces to an AdaBoost-like algorithm, with the
only difference being that the weights on data points
used in POEBoost are normalized across the classes
whereas for AdaBoost they are not. Future work will
focus on how to determine good settings for α in a
given range, and analyzing the rates of convergence in
these situations.

References

[Collins et al., 2002] Collins, M., Schapire, R. E., and
Singer, Y. (2002). Logistic regression, AdaBoost and
Bregman distances. Machine Learning, 48:253–285.

[Freund and Schapire, 1997] Freund, Y. and Schapire,
R. E. (1997). A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of
Computer and System Sciences, 55:119–139.

[Friedman et al., 2000] Friedman, J., Hastie, T., and Tib-
shirani, R. (2000). Additive logistic regression: a statis-
tical view of boosting. Annals of Statistics, 28.

[Friedman, 2001] Friedman, J. H. (2001). Greedy function
approximation : A gradient boosting machine. Annals
of Statistics, 5:1189–1232.

[Hinton, 2002] Hinton, G. (2002). Training products of
experts by minimizing contrastive divergence. Neural
Computation, 14:1771–1800.

[Kivinen and Warmuth, 1999] Kivinen, J. and Warmuth,
M. K. (1999). Boosting as entropy projection. In Pro-
ceedings of the twelfth annual conference on Computa-
tional learning theory, COLT ’99, pages 134–144.

[Mason et al., 1998] Mason, L., Baxter, J., Bartlett, P.,
and Frean, M. (1998). Boosting algorithms as gradi-
ent descent in function space. Technical report, Can-
berra: Department of Systems Engineering, Australian
National University.

[Schapire, 1990] Schapire, R. E. (1990). The strength of
weak learnability. Machine Learning, 5:197–227.

[Schapire and Singer, 1998] Schapire, R. E. and Singer, Y.
(1998). Improved boosting algorithms using confidence-
rated predictions. In Proceedings of the Eleventh Annual
Conference on Computational Learning Theory.

8 Appendix

8.1 Appendix A

In this appendix, we derive the constraint that en-
sures a non-decreasing likelihood for every addition of
an expert to the ensemble. The log likelihood for an
ensemble with j experts is given by

Lj = logP (y1 . . . yN |x1 . . . xN , h1 . . . hj) (33)

and for j − 1 experts it is given by

Lj−1 = logP (y1 . . . yN |x1 . . . xN , h1 . . . hj−1). (34)

The requirement that Lj ≥ Lj−1 results in∑
i

log

(
Qi

j−1 +
P (yi|xi, hj)

P (yi|xi, hj)
Q

i

j−1

)
≤ 0 (35)

where Qij−1 = P (yi|xi, h1 . . . hj−1) and Q
i

j−1 =
P (yi|xi, h1 . . . hj−1). We cannot find a closed form so-
lution for the inequality in eq. (35) and hence we relax
the bound using Jensen’s inequality

1

N

∑
i

log

(
Qi

j−1 +
P (yi|xi, hj)

P (yi|xi, hj)
Q

i

j−1

)
≤ log

1

N

∑
i

(
Qi

j−1 +
P (yi|xi, hj)

P (yi|xi, hj)
Q

i

j−1

)
≤ 0.

(36)

Simplifying the inequality in eq. (36) we obtain the
constraint on the expert probabilities given in eq. (6).

8.2 Appendix B

In this appendix, we prove the bound given in eq. (30) :

∑
i

1(
P eP i

h + PeP
i
h

) ≤ ∑
i:P i

h
≤0.5

2

(
2− 1

Pe

)
P i
h +

1

Pe

+
∑

i:P i
h
>0.5

2

(
1

P e

− 2

)
P i
h +

(
4− 1

P e

)
(37)

where P ih = P (Z = y|x, h), P
i

h = 1−P ih, P e = 1−Pe.

Proof. Consider the function f(Pe) = 1/Pe defined in
the interval Pe ∈ [0, 1]. The function f is convex in
the given interval which allows us to bound it using a
linear combination of the function values at individual
points given by :

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ) f(x2) (38)

where λ ∈ [0, 1]. To find a bound for 1(
P eP ih+PeP

i
h

) ,

we consider two different cases for P ih. In the first
instance, we consider P ih varying in the interval [0, 1/2]
and use the inequality eq. (38) with λ = 2P ih, x1 =(
Pe + P e

)
/2 and x2 = Pe to get

f

(
2P i

h
Pe + P e

2
+
(

1− 2P i
h

)
Pe

)
≤ 2P i

hf

(
Pe + P e

2

)
+
(

1− 2P i
h

)
f (Pe)

(39)

⇒ f
(
P eP

i
h + Pe

(
1− P i

h

))
≤ 2P i

hf

(
Pe + P e

2

)
+
(

1− 2P i
h

)
f (Pe) .

(40)

Using the definition of f and noting that P
i

h = 1−P ih
we can rewrite the inequality as

∑
i

1(
P eP i

h + PeP
i
h

) ≤ ∑
i:P i

h
≤0.5

2

(
2− 1

Pe

)
P i
h +

1

Pe

(41)

which proves the first part of the inequality eq. (37).
We prove the second part when P ih ∈ [0.5, 1] in a sim-
ilar way. We again use the inequality in eq. (38) with
λ = 2P ih − 1, x1 = P e and x2 = 2/

(
Pe + P e

)
to ob-

tain :

f

((
2P i

h − 1
)
P e +

(
2− 2P i

h

) 2(
Pe + P e

))

≤
(

2P i
h − 1

)
f(P e) +

(
2− 2P i

h

)
)f(

2(
Pe + P e

))

(42)

⇒ f
(
P eP

i
h + Pe

(
1− P i

h

))
≤
(

2P i
h − 1

)
f(P e) +

(
2− 2P i

h

)
f

(
2(

Pe + P e

)) . (43)

Using the definition of f we can rewrite the inequality
as :

∑
i

1(
P eP i

h + PeP
i
h

)
≤

∑
i:P i

h
>0.5

2

(
1

P e

− 2

)
P i
h +

(
4− 1

P e

)
. (44)

Combining eq. (41) and eq. (44) proves the inequality
in eq. (37).

