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Abstract. We propose a set of novel methodologies which enable valid
statistical hypothesis testing when we have only positive and unlabelled
(PU) examples. This type of problem, a special case of semi-supervised
data, is common in text mining, bioinformatics, and computer vision. Fo-
cusing on a generalised likelihood ratio test, we have 3 key contributions:
(1) a proof that assuming all unlabelled examples are negative cases is
sufficient for independence testing, but not for power analysis activities;
(2) a new methodology that compensates this and enables power anal-
ysis, allowing sample size determination for observing an effect with a
desired power; and finally, (3) a new capability, supervision determina-
tion, which can determine a-priori the number of labelled examples the
user must collect before being able to observe a desired statistical effect.
Beyond general hypothesis testing, we suggest the tools will addition-
ally be useful for information theoretic feature selection, and Bayesian
Network structure learning.

1 Introduction

Learning from Positive-Unlabelled (PU) data is a special case of semi-supervised
learning, where we have a small number of examples from the positive class, and
a large number of unlabelled examples which could be positive or negative. The
objective in this situation is to perform standard machine learning activities de-
spite this data restriction. The problem has been referred to in the literature
under several names, including partially supervised classification [15], positive
example based learning [19] and positive unlabelled learning [9]. A typical ap-
plication has been text classification — given a number of query documents
belonging to a particular class (e.g. academic articles about machine learning),
plus a corpus of unlabelled documents, the task is to classify new documents as
relevant to the query or not.

Most work in the PU area is concerned with classification, rather than theory.
Denis [8] is an interesting exception, which generalised Valiant’s PAC learning
framework to PU data, and concluded that learning from positive and unlabelled
examples is possible, but that we must have some additional prior knowledge
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about the underlying distribution of examples. We make use of this observation,
exploring how statistical hypothesis testing manifests in PU data, and how such
prior knowledge can be incorporated.

In this context, we focus on the G-test [18], a generalised likelihood ratio test
used for testing independence of categorical variables, which is closely related
to the mutual information (Sec. 3). The G-test and the mutual information
are used extensively, for example in life sciences to test whether two observed
natural processes are independent [16]. In machine learning and in data mining
they also have a large number of applications, for instance in structure learning
of a Bayesian Network [2] or in feature selection [4]. The main contributions1 of
our work are the following
– A proof that, the common assumption of all unlabelled examples being nega-

tive is sufficient for testing independence (Sec. 4.1), but insufficient for more
advanced activities such as power analysis (Sec. 4.2).

– A methodology for a-priori power analysis in the PU scenario, enabling sam-
ple size determination for observing an effect with a desired power (Sec. 5).

– A novel capability: supervision determination, which can determine the min-
imum number of labelled data to achieve a desired power (Sec. 5).

In a general hypothesis testing scenario, our results make clear the implica-
tions of using the G-test under the PU constraint, and leads to more cost-effective
experimental design. In wider machine learning activities, there are several appli-
cations. For example, constraint-based learning of Bayesian Network structures:
the decision on whether to include an arc between two nodes is often made with
a hypothesis test such as χ2, or the mutual information, both of which are core
to our work. Another example is information theoretic feature selection, Guyon
et al. [13, pg 68] discuss how the statistical viewpoint on feature selection al-
lows decision-making on the relevance/redundancy of a feature to be made in
a principled manner. Our methods permit these activities under the PU data
constraint.

2 Background on the Positive Unlabelled Problem

Positive-Unlabelled data refers to situations where we have a small number of
examples labelled as the positive class, and a large number of entirely unlabelled
examples, which could be either positive or negative. Whilst classification is well
explored in the PU scenario, an area in need of attention is statistical hypoth-
esis testing: including independence tests, and more complex activities such as
power analysis. We now introduce the formal framework of Elkan & Noto [10]
for reasoning over PU data, which we build upon in our work.

2.1 Positive Unlabelled Framework

Assume that a dataset D is drawn i.i.d. from the joint distribution p(X,Y, S),
where the features X are categorical, the class Y is binary, and S is a further

1 Matlab code for all methods and the supplementary material with all the proofs and
extra results are available in www.cs.man.ac.uk/~gbrown/posunlabelled/.

www.cs.man.ac.uk/~gbrown/posunlabelled/
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random variable with possible values ‘s+’ and ‘s−’, indicating if the example is
labelled (s+) or not (s−). Thus p(x|s+) is the probability of X takes the value
x from its alphabet X conditioned on the labelled set. The same shorthand
notation is used for Y , where the positive class is indicated by ‘y+’, and the
negative class by ‘y−’.

In this context, Elkan & Noto formalise the selected completely at random
assumption, saying that the examples for the labelled set are selected completely
at random from all the positive examples:

p(s+|x, y+) = p(s+|y+) ∀ x ∈ X .

Thus, the probability of a positive example being labelled is independent of the
input x. Perhaps most interestingly, Elkan & Noto proceed to show that this
assumption has been followed either explicitly or implicitly in most research on
PU data.

2.2 A Naive Approach–Assuming Unlabelled Examples are
Negative

One approach to learn from this data is to simply assume that any unlabelled
examples are negative. This approach, while seemingly naive, has proven to be
useful for classification. Elkan & Noto [10] show that a probabilistic classifier
trained on such data predicts posterior probabilities that differ from the true
values by a constant factor; they suggest a number of ways to estimate this factor
using a validation set. In a different context, Blanchard et al. [3] use the same
assumption and prove that semi-supervised novelty detection can be reduced to
Neyman-Pearson binary classification using the nominal and unlabelled samples
as the two classes, in their terminology.

2.3 Incorporating Prior Knowledge

Another general approach follows the theoretical work of Denis [8], incorporating
prior knowledge of the class distributions to augment the learning. For example,
Calvo et al. [5] build PU naive bayes classifiers, and propose a Bayesian solution
to deal with uncertainty in the distribution of the positive class.

At first glance, in the PU learning environment estimating p(x|y−) seems
impossible without negative data. However, with a neat rearrangement of the
marginal p(x) and some extra information, it turns out to be possible. The
marginal is p(x) = p(x, y−) + p(x, y+), which can be rearranged:

p(x|y−) = p(x)− p(x|y+)p(y+)
1− p(y+)

. (1)

Denis et al. [9] exploited this to construct a PU Naive Bayes classifier, esti-
mating p(x|y+) by maximum likelihood on just the labelled set, i.e. assuming
p̂(x|y+) ≈ p̂(x|s+), and estimating p(x|y−) using equation (1). The prior p(y+)
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was provided as a user-specified parameter, p̃. Thus, the missing conditional
probability p(x|y−) is estimated as,

p̂(x|y−) ≈ p̂(x) − p̂(x|s+)p̃
1− p̃

,

where p̂(x), p̂(x|s+) denote the maximum likelihood estimates of the respective
probabilities. Although this seems a heuristic approach, we will now show with
the following Lemma that under the selected completely at random assumption
it is indeed valid.

Lemma 1. Assuming data is selected completely at random, the conditional dis-
tribution of x given y = 1 is equal to the conditional distribution of x given that
it is labelled.

p(x|y+) = p(x|s+) ∀ x ∈ X .

The proof of this Lemma and all the proofs of this work are available in the
supplementary material.

2.4 Summary

In our work we will explore both approaches in the context of statistical hypoth-
esis testing. By using the naive but common assumption that all the unlabelled
examples are negative we can perform a test of independence between X against
either the true labels (Y ) or the assumed ones (S). In Section 4 we prove that
these two cases have precisely the same false positive rate but different true pos-
itive rates (i.e. statistical power). While in Section 5, by using prior-knowledge,
we derive a correction factor for the test that brings these into parity – identical
true positive and false positive rates. As a consequence we can also perform pos-
itive unlabelled sample size determination, and determine the number of labeled
examples needed to observe a desired statistical effect with a specified power.
Before that, in Section 3 we review the likelihood ratio test that this work builds
upon.

3 Hypothesis Testing

3.1 The G-test of Independence

In fully observed categorical data, the G-test can be used to determine statisti-
cal independence between categorical variables [18]. It is a generalised likelihood
ratio test, where the test statistic can be calculated from sample data counts
arranged in a contingency table. Denote by Ox,y the observed count of the num-
ber of times the random variable X takes on the value x from its alphabet X ,
while Y takes on y ∈ Y; and by Ox,. and O.,y the marginal counts. The esti-
mated expected frequency of (x, y), assuming X,Y are independent, is given by
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Ex,y = p̂(x)p̂(y)N =
Ox,.O.,y

N . The G-statistic can now be defined as

G = 2
∑

x∈X

∑

y∈Y
Ox,y ln

Ox,y

Ex,y
= 2N

∑

x∈X

∑

y∈Y
p̂(x, y) ln

p̂(x, y)

p̂(x)p̂(y)
= 2NÎ(X ;Y ) (2)

where Î(X ;Y ) is the maximum likelihood estimator of the mutual information
between X and Y [17]. Under the null hypothesis that X and Y are statistically
independent, G is known to be asymptotically χ2-distributed, with ν = (|X | −
1)(|Y| − 1) degrees of freedom [18]. For a given dataset, we calculate (2) and
check to see whether it exceeds the critical value defined by a significance level α
read from a standard statistical table giving the CDF of the χ2-distribution —
if the critical value is not exceeded, the variables are judged to be independent.

3.2 Power Analysis

With such a test, it is common to perform a power analysis [6]. The power of
a test is the probability that the test will reject the null hypothesis when the
alternative hypothesis is true. This is also known as the true positive rate, or the
probability of not committing a Type-II error. An a-priori power analysis would
take a given sample size N , a required significance level α, an effect size ω, and
would then compute the power of the statistical test. However, to do this we
need a test statistic with a known distribution under the alternative hypothesis.

It is known that the G-statistic (2) has a large-sample non-central χ2 distri-
bution under the alternative hypothesis (i.e. when X and Y are dependent) as
presented by Agresti [1, Section 16.3.5]. Agresti shows that the χ2 non-centrality
parameter (λ) has the same form as the G-statistic, but with sample values re-
placed by population values. In other words, the non-centrality parameter under
the alternative hypothesis is given by λ = 2NI(X ;Y ). Thus λ is a parameter,
and G is a random variable following a distribution defined by λ.

One important usage of a-priori power analysis is sample size determination.
In this prospective procedure we specify the significance level of the test (e.g. α =
0.05), the desired power (e.g. a false negative rate of 0.01) and the desired effect
size – from this we can determine the minimum number of examples required to
detect that effect.

It turns out that the effect size of the G-test can be naturally expressed as a
function of the mutual information. More specifically, the effect size (ω) is the
square root of the non-centrality parameter divided by the sample size [6], thus
we have ω =

√
2I(X ;Y ). Therefore, to understand hypothesis testing in PU

data, we must understand the properties of mutual information in such data.

4 Hypothesis Testing in Positive Unlabelled Data

In this section we will focus in PU data by adopting the very common assumption
that all unlabelled examples are negative, and exploring the consequences for
hypothesis testing.
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4.1 Testing for Independence in Positive Unlabelled Data

In positive unlabelled data, it is not immediately obvious how to apply the
G-test described in the previous section, since the variable Y is only partially
observed. The ‘naive’ approach would be to assume all unlabelled examples as
negatives, and test for independence in the usual manner. This is in effect testing
independence between X and S, the variable describing whether an example
is labelled. While this is arguably a rather significant assumption, it is in fact
sufficient to answer the question of whether X,Y are independent. This is proved
formally with the following simple theorem.

Theorem 1. In the positive unlabelled scenario, under the selected completely
at random assumption, a variable X is independent of the class label Y if and
only if X is independent of S, so it holds X ⊥⊥ Y ⇔ X ⊥⊥ S.

Intuitively, we can describe variable S as a noisy copy of Y , with no false positives
but potentially a large number of false negatives. So instead of checking the
independence with the actual variable Y we can check with the noise version S.
The proof of the Theorem 1 is available in the supplementary material, though
the theorem can be also experimentally verified with a simple ‘sanity check’
experiment. We generated data as so: X,Y are independent Bernoulli variables
each with p = 0.5 and take N = 1000 observations. For the PU case, all negative
examples have their labels removed, and we randomly remove a fraction (1− c)
of the positive labels, where c is the fraction of all positive examples that are
labelled, also written as c = p(s+)/p(y+). To test independence we apply the
G-test with a significance level of α = 0.01 to test the assertion that X ⊥⊥ Y
in the supervised case, and X ⊥⊥ S in the PU case. Since the null hypothesis
(X ⊥⊥ Y ) is true, we expect a false positive rate of 1% in both cases — this
is verified below in Figure 1a (over 100,000 repeats) holding for all supervision
levels p(s+) and in Figure 1b holding for different sample sizes when we fix the
supervision level to be p(s+) = 0.1. The slight fluctuation comes from the limited

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.002

0.006

0.010

0.014

0.018

p(s+)

F
P

R

 = 0.01, df = 1, p(y+) = 0.50, N = 1000 

G(X;S)
G(X;Y)

(a)

500 700 900 1100 1300 1500 1700 1900 2100
0.002

0.006

0.01

0.014

0.018

N

F
P

R

 = 0.01, df = 1, p(y+) = 0.50, p(s+) = 0.10

G(X;S)
G(X;Y)

(b)

Fig. 1. Figure for Type-I error. (a) Type-I error changing as a function of the prob-
ability of an example being labeled p(s+), for fixed α = 0.01, N = 1000. (b) Type-I
error changing as a function of N , for fixed α = 0.01, p(s+) = 0.10.

sample size. While Theorem 1 tells us that the two possible tests, G(X ;Y ) and
G(X ;S), are equivalent for observing independencies, it says nothing about how
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well the naive G(X ;S) test will perform when the null hypothesis is false. In this
case we must compare the tests in terms of their power to detect a given effect.

4.2 Comparing the Power of the Tests

In order to compare the power of the two tests we must examine their non-
centrality parameters. Section 3.2 presents that the non-centrality parameter for
the G-test is λ = 2NI(X ;Y ). Therefore, the power of the tests depends on the
population values of the mutual informations I(X ;Y ) and I(X ;S). With the
following theorem we prove an inequality between these two quantities

Theorem 2. In the positive unlabelled scenario, under the selected completely
at random assumption, when X and Y are dependent random variables (X⊥⊥Y )
we have I(X ;Y ) > I(X ;S).

A direct consequence of the theorem is the following corollary.

Corollary 1. The derived test under the the naive assumption, G(X ;S), is less
powerful than G(X ;Y ). In other words using the noisy copy S of Y , will result
in a test G(X ;S) which will have a higher false negative rate than G(X ;Y ).

The proof of the Theorem 2 is available in the supplementary material, here we
will give an experimental verification. As a sanity check we should explore how
the two tests perform when we have an actual effect to observe. To create pairs
of X and Y with a specific effect we generate data as follows. Firstly, generate
a random sample x = {x1, .., xN}, where each xi ∈ {0, 1} and p(x = 1) = 0.2.
Then create an identical copy of this sample as yN

i=1. This creates a dataset where
x,y are by definition completely dependent. We then corrupt this dependency
by picking a random fraction of the examples, and setting a new value for each
selected xi by drawing a binary random variable with parameter p = 0.5. It
is clear that by varying the number of examples which are corrupted by noise,
we generate random variables with different mutual informations. For example
when we corrupt 60% of the examples with noise, we can calculate analytically
that the resulting variables have I(X ;Y ) = 0.053 (in this work the effect sizes
are written to 3 decimal places).

In order to observe the power of the two tests we will plot figures similar to
the figures in Gretton & Györfi [12]. In the x-axis we have different values for the
effect size, while in the y-axis is the acceptance rate of the null hypothesis H0

(over 10,000 independent generations of the data, each of size N = 200). The
y-intercept represents 1 − (Type I error), and should be close to 1 − α, while
elsewhere the plots indicate the Type II error. As we observe from the Figure 2
the test between X and S is less powerful than the test between X and Y , and
this result verifies the Corollary 1. Furthermore the intercepts are at the same
value (close to the design parameter 1 − α), which again verifies that the tests
have the same Type-I error, but as can be seen different Type-II error.

Given this corollary, it is interesting to ask how we might modify our practice
with G(X ;S) to achieve a desired power, in spite of the partially observed vari-
able. In the next section we will show how we can incorporate prior knowledge
to address this question.
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Fig. 2. Figure for comparing the Type-II error of the two tests using (a) α = 0.01 and
(b) α = 0.10

5 Incorporating Prior Knowledge for Power Analysis

In order to use G(X ;S) for a-priori power analysis activities, we should quantify
the amount of power that we lose by adopting the naive assumption that all the
unlabelled examples are negative. In this section we show how to incorporate
prior knowledge to calculate this quantity.

Cohen [6] proposed (with appropriate caution) several conventional effect sizes,
facilitating cross-experiment comparison. In the case ofχ2 tests, a “medium” effect
is ω = 0.3. Since ω =

√
2I(X ;Y ), this translates to I(X ;Y ) = 0.045. With PU

data, the key problem emerges here in that the standard effect size is naturally
expressed in terms of I(X ;Y ), whereas our test G(X ;S) in terms of I(X ;S). In
order to deal with this problem, we will incorporate a user’s prior knowledge of
p(y+), and correct the non-centrality parameter of the test in such a way that we
can use it for a-priori power analysis.

Theorem 3. The non-centrality parameter of the G-test between X and S takes
the form:

λG(X;S) = κλG(X;Y ) = κ2NI(X ;Y ),

where κ = 1−p(y+)
p(y+)

p(s+)
1−p(s+) =

1−p(y+)
p(y+)

NS+

N−NS+
.

Again the proof is in the supplementary material, and here we will give an
empirical verification following the same experimental setup as the one described
in Section 4.2. Thus as a sanity check in Figure 3 we observe that if we increase
the sample size of the test between X and S by a factor κ, the two tests have the
same power, and this result verifies Theorem 3. No matter what the sample size
is, the intercepts are always at the same value (close to the design parameter
1− α), which again verifies that the tests have the same Type-I error.

We see that the non-centrality parameter λG(X;S) is a function of: the sample
size, the desired effect size and additionally a correction factor, κ, which depends
on the number of labelled examples that we have (NS+). When we have full
supervision, in other words when p(s+) = p(y+), the κ takes the maximum
value 1. In any other PU case, where p(s+) < p(y+), the value is κ < 1.
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Fig. 3. Figure for comparing the Type-II error of the two tests and the G-test between
X and S with corrected sample size , using (a) α = 0.01. (b) α = 0.10.

In PU data, the prior probability p(y+) is in general unknown. Elkan & Noto
[10] suggest an estimator for this parameter, which could potentially be used
before an a-priori power analysis. A different way is to introduce a prior belief
over that parameter; we will represent our prior belief as p̃, and the correction
factor is re-written as

κ =
1− p̃

p̃

p(s+)

1− p(s+)
=

1− p̃

p̃

NS+

N −NS+

.

This correction factor enables us to use the G(X ;S) test in place of the G(X ;Y )
for power analysis activities, such as sample size determination. Taking advan-
tage of the extra degree of freedom in p(s+), we can also determine the required
level of supervision (i.e. number of labelled examples), following the same pro-
cedure as in sample size determination. These capabilities will be empirically
evaluated in the next section.

6 Experiments for a-priori Power Analysis

In this section we will show the capabilities of the G-test between X and S
when the non-centrality parameter is corrected with the κ presented in Theorem
3, including sample size determination under the PU constraint, and a novel
capability — determining the minimum number of labelled examples necessary
to achieve statistical significance. We separate these experiments in two parts,
the first one where we have perfect prior knowledge and the second where we
use uncertain prior knowledge.

6.1 Perfect Prior Knowledge

In this section firstly we will provide some theoretical predictions for sample size
and supervision determination, and then we will verify them empirically.

Theoretical Predictions for Sample Size Determination
Figure 4a shows how classical power analysis changes under the PU constraint.
The illustration is for significance level α = 0.01, a required power of 0.99,
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p(y+) = 0.2, and binary features (degrees of freedom ν = 1). For the reader’s in-
terest, all the figures and tables of this work are reproduced in the supplementary
material with ν = 9, meaning |X | = 10.

In Figure 4a we see the dashed line, which shows classical sample size deter-
mination – this is a standard result. The solid line shows the PU case, when we
can obtain labels only for 5% of the examples (i.e. p(s+) = 0.05).
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Fig. 4. Figures for sample size determination. (a) Contrasting classical power analysis
(p(s+) = p(y+)) with PU power analysis to determine the minimum sample size.
Arrows show that with 5% supervision (p(s+) = 0.05), we need N ≥ 1077 examples to
achieve the desired power in order to observe a supervised effect I(X;Y ) = 0.053. (b)
Sample size determination under the PU constraint. Given a required statistical power,
this illustrates the minimum total number of examples (N) needed, assuming we can
only label 5% of the instances. For example, if we wish to detect a mutual information
as low as 0.04, we need N ≥ 1430 to have a power of 99%.

The figure can be interpreted as follows: if we wish to detect a dependency
with mutual information as low as I(X ;Y ) = 0.053, with power 99%, in the
fully supervised case (dashed line) we require N ≥ 227. However in the PU
scenario (solid line) with p(s+) = 0.05, this a-priori power analysis indicates
we need N ≥ 1077. Note that the required increase is not a simple multiple of
the supervision level: with only 1/4 of the positive examples being labelled one
might assume we need a sample 4× larger, which would be 908, however this is
insufficient for the required power as shown by the figure. In this case, κ = 0.2105,
and the required increase is a multiple of that factor: 227× (1/κ) ≈ 1078. The
above results are expanded upon in Figure 4b, showing the required N to obtain
different power levels.

Theoretical Predictions for Supervision Determination
For power analysis in the PU constraint, we are able to use the same method-
ologies as in sample size determination to determine the necessary level of su-
pervision, i.e. the number of labelled examples. This may have implications in
active learning [7], where we can request the labels of particular examples —
this methodology allows us to predict when we have sufficient labels to have
statistically significant results.
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Figure 5 presents the a-priori PU power analysis, allowing us to determine
the minimum level of supervision to achieve a certain statistical power. The y-
axis is NS+ , the number positive examples that have labels. This shows just
one scenario, with α = 0.01, N = 1000, when the true prior is p(y+) = 0.2.
As an illustration, the solid line predicts that to detect a dependency as low as
I(X ;Y ) = 0.053, with power greater than 99%, we will need to label at least 54
examples or in other words the probability of an example being labeled should
be p(s+) ≥ 0.054.
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Fig. 5. Determining the required number of labelled examples. This illustrates the
required number of labelled examples (NS+), assuming N = 1000. For example, to
detect a mutual information dependency as low as 0.02, in order to have a power of
95%, we need labels for 101 examples, which means that we need to label at least half
of the positive examples.

Verifying the Theoretical Predictions
To verify the theoretical predictions of required sample size and supervision
level, we generate binary variables with a very small dependency (i.e. very small
effect size) and observe the ability of a test to reject the null hypothesis — or
in other words the False Negative Rate (Type-II error). Since the power is given
by 1 − FNR, any prediction of required N to achieve a particular power will
translate directly to a corresponding FNR.

As a sanity check, we first verify the classical sample size determination for
the G-test. Figure 4a (dashed line) predicts that we will need N ≥ 227 to detect
an underlying effect size of I(X ;Y ) = 0.053, with α = 0.01 and power 99%.
Figure 6a shows the FNR over 10,000 repeats. Note that the FNR crosses below
the 1% rate when N ≈ 225. The next experiment verifies the PU sample size
prediction. As before, the negative examples all have their labels removed, and
we randomly remove a fraction (1−c) of the positive labels. Figure 4a (solid line)
predicted that to detect an effect as small as I(X ;Y ) = 0.053, with α = 0.01
we would require N ≥ 1077 to achieve an FNR below 1%. The FNR again over
10,000 repeats is shown in Figure 6b, supporting the theory as the FNR crosses
1% when N ≈ 1080.

Finally we verify the predictions from Figure 5. We generate PU data as
before, introducing noise such that the true underlying variables have I(X ;Y ) =
0.053. Figure 7 shows the FNR, verifying that when we provide labels to the
example with probability less than 0.054, or in other words when we label less
than 54 examples the Type-II error is greater than 1%, and agrees with Figure 5.
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Fig. 6. Figures for FNR. (a) Full supervision, when the true mutual information is
I(X;Y ) = 0.053. This verifies the theoretical prediction from Fig. 4a. (b) Supervision
level p(s+) = 0.05, supporting the predictions of Fig. 4a.
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Fig. 7. FNR for varying levels of supervision in the PU constraint, with required power
99%, verifying Figure 5 (solid line), which predicted we would need p(s+) ≥ 0.054 ⇔
Ns+ ≥ 54 to get FNR < 0.01.

6.2 Uncertain Prior Knowledge

The previous section assumed we somehow knew the exact value of p(y+). In
a more realistic scenario prior knowledge may be provided as a distribution
over possible values. We model p̃ as a generalised Beta distribution, between a
minimum and a maximum value [14], and use Monte-Carlo simulation to explore
the resultant uncertainty in the required sample/supervision sizes.

Figure 8 presents sample size determination when we have uncertain prior
knowledge. The dashed vertical line indicates the perfect prior knowledge situ-
ation from the previous section. If we use a sample size less than this, we have
an increased false negative rate. On the other hand, choosing a larger size will
achieve at least the desired power, but at the cost of collecting more data.

Figure 9 presents how this uncertainty would translate to the required num-
ber of labeled examples. The same principle of choosing a value over/under the
dashed line applies: here if we select Ns+ > 54 we are unnecessarily increasing
our cost of label collection. In Figure 10 we observe the behavior when we under-
estimate (first row) or overestimate (second row) the p(y+). A general conclusion
is that the uncertainty in the prior translates quite directly to an uncertainty of



78 K. Sechidis, B. Calvo, and G. Brown

I(X;Y) = 0.053, power =0.99, α = 0.01, df = 1, p(y+) = 0.20
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Fig. 8. Sample size determination under uncertain prior knowledge. LEFT: The user’s
prior belief over the value of p(y+). The dashed line shows the true (but unknown)
value in the data. RIGHT: The resultant uncertainty in the required sample size when
we have only 5% of the examples being labeled, we plot both the histogram and the
generalized beta distribution best fits to the data.
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Fig. 9. Supervision determination under uncertain prior knowledge. LEFT: The user’s
prior belief over the value of p(y+). The dashed line shows the true (but unknown) value
in the data. RIGHT: The resultant uncertainty in the minimum number of required
labeled examples when we have only N = 1000. The dashed line indicates the the true
value with no uncertainty in p(y+).

a similar form over the minimum number of samples and a minimum amount of
supervision.

7 Guidance for Practitioners

Guidance for practitioners depends on the conditions in a given application. To
ensure an effect would not be missed when indeed present, one should overes-
timate the value of p(y+), hence leading to a larger number of examples/labels
being collected. Conversely, if collection of examples/labels is a costly matter,
one can take a more risky, but informed decision, using less examples/labels.
Furthermore, to achieve a desired statistical power, choosing to fix the amount
of supervision or the sample size is application-dependent.

Under our framework we can generate tables for sample size and supervision
determination under the PU constraint similar with that used in the literature,
e.g. Table 1(a). For a given effect size (ω), degrees of freedom (df), significance
level (α), level of desired power, prevalence (p(y+)) and fixed supervision level
(p(s+)), in Table 1(b) we can observe the minimum sample size is needed in
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Fig. 10. A-priori power analysis under uncertain prior knowledge, when we underesti-
mate (first row) and overestimate (second row) the prior

order to observe the effect with the given power. For the effect we followed
the three levels of Cohen [6] small (ω = 0.10 ⇔ I(X ;Y ) = 0.005), medium
(ω = 0.30 ⇔ I(X ;Y ) = 0.045) and large (ω = 0.50 ⇔ I(X ;Y ) = 0.125).

Table 1. Sample size required for df = 1 and α = 0.01

(a) Traditional

Effect sizes
Power Small Medium Large
0.70 962 107 39
0.80 1168 130 47
0.90 1488 166 60
0.95 1782 198 72
0.99 2404 268 97

(b) PU with p(y+) = 0.20, p(s+) = 0.05

Effect sizes
Power Small Medium Large

0.70 4566 508 183
0.80 5548 617 222
0.90 7068 786 283
0.95 8462 941 339
0.99 11415 1269 457

A new type of table can be generated when we fix the sample size and we want
to determine the minimum amount of supervision (or in other words, the mini-
mum number of labelled examples) that we need in order to observe a specific
effect with a desired statistical power. Table 2 presents the minimum number
of labelled positive examples that we need when we have similar conditions as
before but now we fix the sample size to be N = 3000.

Table 2. Labelled positive examples required for a PU test with p(y+) = 0.20, N =
3000, df = 1 and α = 0.01

Effect sizes
Power Small Medium Large

0.70 223 27 10
0.80 267 33 12
0.90 331 41 15
0.95 388 49 18
0.99 501 66 24
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So in practical terms: if we assume we had 3000 examples, and we know
that approximately 600 of them are positive – if we wish to detect a “medium”
sized effect (in Cohen’s terminology), then, in order to achieve a false negative
rate of 5% (i.e. power 0.95), we only need to identify correctly 49 from those
600 examples, according to Table 2. A different way to read the results is the
following: imagine that we want to design an experiment in order to observe a
medium effect with a statistical power of 80%, and the prevalence is p(y+) =
0.20. If we could label both positive and negative cases, we would need 130
examples according to Table 1(a). So we would need to label 26 positives and
104 negatives. Instead of this we can use the results of Table 1(b) and collect
617 examples out of which we will label only 5%; in other words, we will label
only 31 examples as positive and keep the rest as unlabelled. Thus, instead of
labelling 104 negative examples, we can label 5 more positive examples and keep
586 as unlabelled. This approach can be useful when it is expensive or difficult to
label examples, while it is cheaper to collect unlabelled. Since in the PU context
labelling samples is expensive this methodology can be used to save resources.

Our results can be used in any research involving hypothesis testing in PU
data. Our framework has been described in terms of the G-test, and the mutual
information as an effect size. We can use the same framework to derive similar
expressions for the χ2-test, and the φ-coefficient as an effect size. Since both G
and χ2 are used extensively in behavioral sciences and biology, our work may
have strong relevance in experimental design for partially supervised data [6,11].
The proposed methods can be used in several machine learning applications.
Structure learning of a Bayesian network or Markov Blanket discovery in PU
data, would use our correctedG-test to decide whether we add an arc or not, since
the same correction factor κ can be derived for the conditional independence
test. Furthermore our power analysis methodology would provide guidance in
controlling the FNR, preventing potential underfitting of the model; a recent
work for the fully supervised case is Bacciu et al. [2] – our framework generalises
this to PU data. Another potential application area is information theoretic
feature selection. We can apply a wide variety of feature selection criteria in PU
data; a recent work for fully supervised data is Brown et al. [4].

8 Conclusions and Future Work

In this work we developed a set of novel methodologies, enabling statistical
hypothesis testing activities in PU data. We proved that a very common as-
sumption, of all unlabelled examples being negative, is sufficient for detecting
independence. However, a G-test using this assumption is less powerful than the
fully supervised version, indicating the assumption is invalid for more complex
power analysis activities. We solve this problem by deriving a correction factor
for the test, incorporating prior knowledge from the user. Using this, we can
perform sample size determination, and have a novel capability: determining the
required number of labelled examples. Experimental evidence supports all theo-
retical predictions. As a future work we will investigate how our framework can
be extended to fully semi-supervised data and how the principles can apply to
other types of hypothesis test.
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