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Abstract—In non-stationary learning, we require
a predictive model to learn over time, adapting to
changes in the concept if necessary. A major concern
in any algorithm for non-stationary learning is its
rate of adaptation to new concepts. When tackling
such problems with ensembles, the concept of diversity
appears to be of significance. In this paper, we
discuss how we expect diversity to impact the rate of
adaptation in non-stationary ensemble learning. We
then analyse the relation between voting margins and
a popular measure of diversity, KW variance, and
use the similarities between them to draw some useful
conclusions regarding ensemble adaptivity.

I. INTRODUCTION

Non-stationary problems represent a considerable

challenge for machine learning algorithms. ‘Non-

stationary’ refers to the distribution of the data with

respect to some unmeasured value (often related

to time); a common scenario involves receiving

a constant stream of data, where each example

must be classified and a true label is provided only

after classification. At some point, the procedure

that generates the data will change - indicating

a change in concept - necessitating a change to

the predictive model. These problems bring two

challenges: learning from data that can be viewed

only once and must then be discarded, and adapting

to the changes of concept.

We encounter concept change in many real-

world applications such as financial market predic-

tion, weather forecasting and spam email detection.

Žliobaitė provides an excellent contemporary sur-

vey of the field [1], indicating the major types of

non-stationarity (e.g. gradual drift, sudden changes,

recurring concepts), and some of the approaches

that are used to deal with them, such as change

detection (‘trigger based’), or continuous adaptation

(‘evolving’).

Some popular approaches to non-stationary learn-

ing utilise ensembles [2] . Ensembles are com-

mittees of base learners that are trained together

and have their predictions combined. With such

an approach, we hope to distill the learning prob-

lem into multiple base learners in such a way

that, following concept change, some base learners

will remain relevant to the new concept. Dynamic

Weighted Majority [3] works on this basis, evalu-

ating the performance of each learner and updating

its combination weight accordingly, adding or re-

moving classifiers based on ensemble performance.

Learn++ [4] is similar, but keeps an ensemble of

static base learners, adding a new learner with each

new batch of data, and reweighting existing learners

using boosting principles. Both of these techniques

monitor the error rate to implicitly detect change,

and update the ensemble to accommodate this.

An important consideration for non-stationary

learning algorithms is “How quickly does the model
adapt to a new concept?”; appreciating the factors

that determine this rate of adaptation is crucial to

understanding and developing techniques. In this

paper we consider the impact of diversity on the

capability of an ensemble to learn new concepts.

The hypothesis is that high diversity will be indica-

tive of quicker adaptation.
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II. BACKGROUND

In this section, we introduce some fundamental

concepts that are essential for understanding the

contributions of the paper.

A. Margins

Popular ensemble training techniques such as

Bagging [5] and Boosting [6] combine their base

learners using uniform or weighted voting; in two

class problems (y ∈ {−1, 1}), for base learners

h1 . . . hL, the ensemble prediction H of example

x is: H(x) = sign(
∑L

l=1 αlhl(x)), where αl is the

weight of the lth base learner (α is normalised so

that
∑L

l=1 αl = 1, and α = 1
L for uniform voting).

The voting margin1 is defined as the ‘confidence-

weighted correctness’ of the prediction on an ex-

ample xi:

mi = yi

L∑
l=1

αlhl(xi). (1)

The sign of a margin indicates whether xi is cor-

rectly predicted: mi > 0 =⇒ H(xi) = yi.

Margins are always in the range mi ∈ [−1, 1], with

their magnitude indicating the confidence of the

prediction. |mi| = 1 occurs only when the whole

ensemble makes the same prediction.

B. Diversity

Diversity is intuitively an important property of

an ensemble; there have to be some differences be-

tween the predictions of the base learners if we are

to gain anything by combining them. Kuncheva and

Whitaker [8] analyse several measures of diversity,

recommending the Q-statistic [9] because of its ease

of calculation and meaningful interpretation. All

the diversity measures can either be considered to

be ‘symmetric’ or ‘asymmetric’, where asymmetric

measures are of the form f(h1 . . . hl, y), depending

on the ensemble and the target variable, while

symmetric measures are of the form f(h1 . . . hl)
and are independent of the target.

1Voting margins are shown by Fruend and Schapire [7] to be
useful in determining generalisation error. Larger margins reduce
an upper bound on generalisation error

Tang [10] expresses several diversity measures in

terms of average base learner accuracy and the num-

ber of incorrect predictions, using this reformulation

to show that maximising diversity is equivalent to

maximising the minimum margin if average base
learner error remains constant. Brown [11] and

Chen [12] present two equivalent decompositions

of the misclassification rate of an ensemble, emaj ,

showing that it comprises an average individual

error term, eind, and a diversity term, Δ, that can

be either positive or negative; for example, in [11,

Equation 12]:

emaj = eind − Δi, (2)

Δi = yiH(xi)
1
L

L∑
l=1

1
2
(1 − hl(xi)H(xi)). (3)

When the ensemble prediction is incorrect, the Δ
term is additive, when the ensemble is correct, the

Δ term is subtractive. These situations are described

as “good” and “bad” diversity respectively; “good”

diversity is when there is high disagreement but

the ensemble is correct, “bad” diversity is high dis-

agreement when the ensemble is incorrect. Again,

this is with the constraint that average base learner
error remains constant; alternatively, one could

think of the diversity term as offsetting changes

in average base learner accuracy when they do not

affect the ensemble prediction.

In the remainder of this paper, we show how

margins and diversity are related, and how we can

apply this knowledge to non-stationary learning.

III. MARGINS AND DIVERSITY IN STATIONARY

LEARNING

In this section, we introduce Kohavi-Wolpert

variance [13] - a measure of diversity - and discuss

its application in stationary learning.

A. Kohavi-Wolpert Variance
We start with a symmetric measure, KW vari-

ance, which captures the variability in the predic-

tions on a single example:

κi =
1
2
(1 − [P̂ (yi|xi)2 + P̂ (−yi|xi)2]), (4)

this is derived from a bias-variance decomposition

of 0/1 classification error.



Theorem 1. The diversity measure, Kohavi-Wolpert
variance, can be expressed in terms of the margins
on the data.

κi ∝ −m2
i . (5)

Proof - See Appendix A.

This is a pleasantly simple relationship.

Kuncheva [14, Appendix 10A] also shows that

is κ related to the ‘disagreement’ measure [15],

which counts the number of pairs of classifiers

that disagree on each example, as κ = L−1
2L dis.

KW variance seems more appropriate than the

Q-statistic because of these links; unlike the

Q-statistic, it can be written in terms of margins, is

related to the intuitive disagreement measure, and

has a meaningful value even on single examples.

B. The Role of Diversity in Stationary Learning

There is well accepted theory showing that some

level of diversity is required to achieve the best

performance on training data [16] [17]. This in-

dicates the role of diversity in stationary learning

problems; a set of suitably diverse base learners is

required for the ensemble is to be expressive enough

to correctly classify more of the training data than

a single model.

Theorem 2. The diversity term Δ from the de-
composition of ensemble error (Equation 3) has
a sign that is determined by yiH(xi) (ensemble
correctness) and a magnitude that is determined by
the absolute value of the margin |mi|:

Δi =
1
2
yiH(xi)(|mi| − 1). (6)

Proof - See Appendix B.

Given that |mi| =
√

m2
i , there is clearly a

close relationship between this quantity and KW

variance. This theorem shows that KW variance is

involved in determining the training performance
of an ensemble. In fact, with the exception of Chen

[12], who showed some interesting empirical cor-

relation between diversity and generalisation error,

a relationship between diversity and generalisation

error is not proposed anywhere in the literature.

IV. THE ROLE OF DIVERSITY IN

NON-STATIONARY LEARNING

In the previous section, we have seen that there

is a close relationship between a symmetric diver-

sity measure (KW variance) and voting margins.

Furthermore, we have seen exactly how diversity

appears in a decomposition of ensemble training

error. The main question that we address in this

paper is What is the role of diversity in non-
stationary learning?.

To some extent, Equation 6 still applies. How-

ever, since the coefficient yiH(xi) depends on the

target yi, we can see that the diversity term will

be perturbed by a change in concept; therefore, this

equation alone does not suggest any principled way

of dealing with concept change.

However, we can make an observation regarding

the quantity |mi|: for uniformly weighted ensem-

bles, this value determines the number of base

learners that must change their predictions in order

to ‘swing’ the vote on xi.

Theorem 3. The number of base learner predic-
tions that must change to ‘swing’ the vote on xi

is:

⌈L|mi| + 1
2

⌉
. (7)

Proof - In Appendix C.

This number can easily be related to the rate of

adaptivity of the ensemble, since it indicates that

fewer base learners need to change their predictions

to affect the ensemble prediction.

Considering our previous connection between

margins and diversity (Theorem 1), we have shown

that reducing the absolute value of the margins is
equivalent to increasing the amount of diversity.

Therefore, our two hypotheses - that diverse en-

sembles should adapt quickly, and that the absolute

margin is instrumental in determining the rate of

adaptivity - converge on the same prediction, which

we now test empirically.



V. EXPERIMENTS

In this section we investigate the following

hypothesis:

Hypothesis - When two ensembles, with identical
error rates, but different amounts of diversity, are
introduced to a new concept, the ensemble with
higher diversity will adapt more quickly.

A. Experimental Setup

The goal of these experiments is to examine

the effect of the diversity of an ensemble when

it encounters a new concept. To this end, we will

generate ensembles of varying diversity that have

similar performance on an initial concept. We will

then present data from a new concept in an online

learning fashion to these ensembles, and evaluate

the rate at which they adapt to the new concept.

1) Data: Since we are only concerned with

abrupt concept changes, we simply need two

datasets with the same number of features; one for

the initial concept and one for the new concept.

Within each concept, the data is independent and

identically distributed. The severity of the difference

between the two concepts is important, since we

would expect the impact of diversity to be more

pronounced when severity is higher.

Figure 1 shows how we generate concepts of

varying severity. We add some features to a sta-

tionary dataset, and fill them with noise. For a new

concept, we swap some of the original features with

the new features, requiring a learning algorithm to

forget about some of the old features and learn

to use the new ones. The number of features that

we change in this way can be varied to affect the

severity of the drift.

In our experiments, where multiple repetitions are

performed, we choose different features to swap at

every repetition, thereby mitigating the impact of

datasets where some features are more important

than others. Figure 2 lists the datasets that were

used and their associated statistics.

Generalisation errors are computed using holdout

samples. The amount of holdout data varies between

datasets; for UCI data, we use 200 examples for

training on the second concept, and the remaining
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Fig. 1. We take an original stationary problem with 5 features,
x1 . . . x5. For the first concept, we append two noise features,
z1, z2, to this. The ensemble is then trained on this concept.
To produce a second concept, we swap z1, z2 with two random
original features (in this case, x1, x4). This gives us two 7-
feature concepts, both with 2 irrelevant features, where 3 fea-
tures (x2, x3, x5) are consistent between concepts. Increasing
the number of noise features that we swap will decrease the
similarity between concepts. Since the concepts both contain all
the original features (the difference being in the order of the
features), they will share common properties such as the Bayes
error rate.

Dataset Examples Features

Heart Disease 270 13

Breast Cancer 569 30

Pima Indians Diabetes 768 8

STAGGER 1500 3

Fig. 2. Dataset properties.

examples for computing generalisation error. For

STAGGER, we use 500 examples to compute gen-

eralisation error.

2) Experimental Protocol: We briefly give an al-

gorithmic description of the experimental protocol.

This process is repeated 10000 times, and we

compute the average error rates from Step 9. Most

of the graphs we present in the next section are the

result of several experiments. We vary the severity

parameter, repeating the experiment for every pos-

sible value. The method we use to generate H is not

critical; we ensured experimentally that there was

a reasonable spread of diversity values (typically

giving mean KW variance in [0.05, 0.25]), and

that the diversity was independent of training error

within the specified range. All error ranges were

[min, min + 0.02], with min values of 0.03, 0.2

and 0.23 for Breast Cancer, Heart Disease and Dia-



Algorithm 1 Experimental Protocol

Require: dataset, severity, min/max errors.

1: Generate two concept datasets, C1 and C2 using

severity parameter to determine the number of

random overlapping features.

2: repeat
3: Generate an ensemble H .

4: err ← Training error of H on C1.

5: until err ∈ [min, max]
6: Compute diversity of H on C1.

7: for each example in C2 do
8: Train H on the next example from C2.

9: Compute generalisation error of H on C2

hold-out data.

10: end for

betes datasets respectively; these values depended

on what predictive performance was possible on

each dataset.

The ensembles consisted of 40 perceptrons, and

when learning the second concept they were trained

using the Online Bagging algorithm [18]. Percep-

trons were used as base learners because their

learning rate is dependent only on a parameter

(learning rate, which we held at 0.05 for all exper-

iments), while other algorithms (e.g. classification

trees, naive bayes, decision stumps) will learn at

different rates depending on the amount of data and

noisiness of data seen previously. Similarly, Online

Bagging makes no provision for concept change,

so adaptation will be entirely determined by the

diversity of the ensemble and the learning rate of

the perceptrons. In all experiments, we calculated

95% confidence intervals, but found that (due to

the number of repetitions) they were too small to

serve any purpose in the graphs we present.

Minku [19] carries out a similar investigation,

although with a more pragmatic emphasis than

ours. A λ parameter in Online Bagging is used as

a proxy for diversity, and diversity is maintained

throughout the experiment, while we only enforce

certain amounts of diversity on the initial concepts.

The results are broadly consistent, although ours

are specifically tailored to address our hypotheses

regarding margins, diversity and adaptivity.

B. Results

We show results on 4 datasets: heart disease,

breast cancer, diabetes and STAGGER [20]. The

first three are UCI datasets where we produce

concepts using the technique described previously,

while STAGGER is a popular artificial concept

change problem. We vary the number of overlap-

ping features to investigate how the severity of

change affects performance.

We make use of two kinds of plot. Where the

problem is already non-stationary (STAGGER), we

show the performance difference between high and

low diversity ensembles as data is received (Figure

3). When the difference is positive, this indicates

an advantage for diverse ensembles, and when it is

negative, an advantage for non-diverse ensembles.

For the other problems, we generate concepts; since

severity is a parameter to this process (the propor-

tion of features to swap), we investigate varying

amounts of severity. These plots show performance

difference using brightness (light is an advantage

for diverse ensembles, dark for non-diverse), with

time on the x-axis as before, and severity on the

y-axis. Low values of severity indicate a small

difference between the two concepts, while high

values indicate a large difference.

Fig. 3. STAGGER dataset (transition from concept 1 to
concept 2). The difference in generalisation error rate between
the least and most diverse ensembles on the first and second
concepts from the STAGGER dataset. The x-axis indicates num-
ber of examples since the concept change. The y-axis indicates
the difference in error rate (positive means that less diverse
ensembles have higher error).



Fig. 4. Breast Cancer dataset. The difference in generalisation
error rate between the least and most diverse ensembles on
concepts generated from the Breast Cancer dataset; White areas
show the biggest gains for high diversity, while dark areas
indicate that low diversity is more desirable. The x-axis indicates
number of examples since the concept change. The y-axis
indicates the severity of concept change (the proportion of the
30 features that were swapped with random noise). The dark
line indicates no performance difference between diverse and
non-diverse. The intensity of the background colour indicates
the percentage advantage for diverse ensembles for the given
timestep and severity.

Figure 4 shows the effect of diversity on gen-

eralisation error for the heart disease dataset. On

the leftmost side of the plot, we see that initial

performance is usually similar, or that less diverse

ensembles are better when severity is low. The

intense white patch indicates a huge advantage to

highly diverse ensembles, where they adapt to the

Fig. 5. Pima Indians Diabetes dataset. See Figure 4 for
explanation.

Fig. 6. Heart Disease dataset. See Figure 4 for explanation.

new concept quickly; the difference is more notice-

able when severity is higher. As more data from

the new concept arrives, we see that the difference

shrinks, with the less diverse ensembles doing better

when severity is low.

The other plots have similar properties, although

Figure 5 only shows an advantage for diverse en-

sembles when severity is very high. Figure 3 shows

the difference in performance on the second concept

in the STAGGER dataset; since STAGGER con-

cepts are already defined, we did not vary severity

for this plot. We see again that the diverse ensem-

bles have a large advantage initially, because they

adapt more quickly, but that less diverse ensembles

soon match their performance.

The STAGGER dataset exhibits unusual be-

haviour in that the initial generalisation error (at

timestep 0) is lower for diverse learners. This is

due to the high severity of concept drift between

concepts 1 and 2 in STAGGER; of the 27 equally

probable values for x, the true label differs between

the concepts in 14 cases, meaning that applying

a classification rule from concept 1 to concept 2
gives worse performance than randomly guessing

the labels.

VI. CONCLUSIONS

We draw three conclusions from the experimental

data:

1) Low diversity ensembles typically perform
better on new concepts - High diversity makes



an ensemble perform closer to random guess-

ing on a new concept. Unless the severity

is very high (so that the new concept is

‘opposite’ of the old concept; Minku [19]

investigates such concept changes more thor-

oughly), this means that low diversity ensem-

bles perform better immediately after concept

change.

2) High diversity ensembles always adapt faster
- The generalisation error of the more diverse

ensembles is always reduced faster, although

its initial value may be higher when severity

is low (for example, in Figure 5 the diverse

ensembles are only successful when more

than half of the features change in the second

concept).

3) Ensembles of any diversity converge to a sim-
ilar final performance - With the exception

of the STAGGER dataset (due to, we expect,

the discrete nature of STAGGER input space

and imposed ordinality from Perceptron base

learners), all the ensembles finally achieve

similar generalisation error.

In this paper, we studied the problem of non-

stationary learning, and the diversity property of

an ensemble. We then showed some intuitive mea-

surements of plasticity, which turned out to be

closely related to diversity. Next, we explained our

intuitions regarding the role of diversity in non-

stationary problems, and how this differs from its

role in stationary problems. Finally, we performed

some experiments which confirmed that higher di-

versity was beneficial when adapting to a new

concept.

APPENDIX

A. Derivation of KW Variance

We start from [13, Equation 3], which gives

classification error in terms of bias, variance and

noise:

err =
∑

x

P (x)(bias2
x + variancex + σ2

x). (8)

This is a decomposition of the 0/1 loss on a single

classifier, where we consider the variance caused by

possible training datasets. The variancex term is:

κi =
1
2
(1 − [P̂ (yi|xi)2 + P̂ (−yi|xi)2]), (9)

where P̂ (yi|xi) indicates the predicted probability

of the correct label on example xi (i.e. the confi-

dence with which the ensemble assigns label yi to

example xi). We can write this using margins, by

using the value of mi as:

P̂ (yi|xi) =
1
2
(1 + mi), (10)

P̂ (−yi|xi) =
1
2
(1 − mi). (11)

This gives:

κi =
1
2
(1 − 1

4
(1 + mi)2 − 1

4
(1 − mi)2), (12)

=
1
4
(1 − m2

i ). (13)

Finally, since we will be concerned with how KW

variance is maximised or minimised, we can remove

constants and scale by 1
4 to give a convenient form:

κi ∝ −m2
i . (14)

This concludes the proof to Theorem 1.

B. Reformulation of Classification Ensemble Error
Decomposition

Brown [11] gives the difference between ensem-

ble error and average base learner error on example

xi to be:

Δi = −yiH(xi)
1
L

L∑
l=1

1
2
(1 − hl(xi)H(xi)). (15)

We can rearrange to give:

Δi =
1
2
yiH(xi)[H(xi)

1
L

L∑
l=1

hl(xi) − 1]. (16)

Now, observing that H(xi) = sign(
∑L

l=1 hl(xi)),
we can see that multiplying the summed term by

H(xi) is equivalent to taking its absolute value.

Progressing from here, using the definition of the



margin and the fact that yi ∈ {−1, 1}, this is also

the absolute value of the mi.

Δi =
1
2
yiH(xi)[| 1

L

L∑
l=1

hl(xi)| − 1], (17)

=
1
2
yiH(xi)[|mi| − 1]. (18)

This concludes the proof to Theorem 2.

C. Proof of Number of Votes Required to Swing the
Ensemble Prediction

In an ensemble, the difference in the number of

votes between the most popular class and the other

class, di, is:

di = H(xi)
L∑

l=1

h(xi). (19)

this quantity is always positive due to the definition

of H . Hence, we can write it as a multiple of the

absolute margin:

di = L|mi|. (20)

Now we consider what happens when one base

learner where h(xi) �= H(xi) changes its predic-

tion. This means that we have one fewer vote in

favour of the majority, and one more in favour of

the minority; di → di − 2. To ‘swing’ the vote,

di must be < 0. This gives the number of votes

required to ‘swing’:

#swing =
⌈L|mi| + 1

2

⌉
. (21)

This concludes the proof to Theorem 3.
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