
UCSpv: Principled Voting in UCS Rule Populations

Gavin Brown
University of Manchester

School of Computer Science
Kilburn Building, Oxford Road,

Manchester M13 9PL

gbrown@cs.man.ac.uk

Tim Kovacs
University of Bristol

Dept of Computer Science
Merchant Venturers Building

Bristol BS8 1UB

kovacs@cs.bris.ac.uk

James Marshall
University of Bristol

Dept of Computer Science
Merchant Venturers Building

Bristol BS8 1UB

marshall@cs.bris.ac.uk

ABSTRACT
Credit assignment is a fundamental issue for the Learning
Classifier Systems literature. We engage in a detailed in-
vestigation of credit assignment in one recent system called
UCS, and in the process uncover two previously undocu-
mented features. We draw on techniques from the classical
pattern recognition literature, showing how to analytically
derive an optimal credit assignment system, given certain
assumptions. Our aim is not primarily to improve accuracy,
but to better understand the system and put it on a more
solid theoretical foundation. Nonetheless, empirical results
on benign data demonstrate our new system, called UCSpv
(UCS with principled voting), can match or exceed the orig-
inal UCS. Further, its fitness function is principled, and,
unlike that of UCS, requires no tuning. However, on more
difficult data it seems UCSpv does need some form of tuning
or correction. We believe the framework we adopt offers a
promising new direction for LCS research, providing princi-
pled methods for action selection and bringing LCS closer
to the mainstream pattern recognition literature.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Concept learn-
ing ; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Classifier systems, Fitness evaluation, Adaboost, Pattern
recognition and classification, Ensembles

1. INTRODUCTION
Learning Classifier Systems (LCS) evolve populations of

rules to solve a given problem. These rulesets tend to con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07,July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

tain many overlapping and contradictory rules, and as such
the issue of conflict resolution – or how to combine the pre-
dictions of rules – is a significant one. Traditionally, the ma-
jority of LCS research has focused on reinforcement learning
systems, while supervised learning systems have received less
attention. We focus on a relatively recent supervised LCS
called UCS [1] and investigate its credit assignment system.
UCS is derived from the extremely popular XCS [9] but
adapted for supervised learning.

In UCS each rule predicts a particular class for datapoints
it matches. This class is fixed when the rule is created. Each
rule’s accuracy is calculated as the proportion of datapoints
correctly classified. Each rule also has a fitness which deter-
mines both its weight in conflict resolution and its reproduc-
tive influence in the genetic algorithm. For each datapoint
to be classified a match set is constructed consisting of all
matching rules. UCS then uses the match set to construct a
prediction array which is a set of system predictions for the
various classes. The prediction array can be seen as storing
the support for each possible class. As UCS is a supervised
system it greedily selects the class with the highest system
prediction. The system prediction for class c on a new input
x is calculated as a normalized fitness-weighted vote:

P (c) =

∑
figi(x)∑
gi(x)

(1)

where the summation is over the entire population, fi is the
fitness of rule i, and the function gi(x) returns 1 if rule i
matches input x, or 0 otherwise. The UCS literature (e.g.
[1, 7]) is ambiguous regarding the exact form of eq(1) but
we have confirmed it [5]. The fitness of rule i is

fi = γexp(1− εi)
v (2)

where εi is the error rate (proportion of datapoints incor-
rectly classified) of rule i on the datapoints it has matched
so far and v is a parameter which affects the relative weight-
ing of rules. The UCS literature does not contain any care-
ful studies of how to set v but recommends v = 10 as a
reasonable value [7]. γexp is an inexperience discount set to
γexp = 0.01 if the number of datapoints matched so far is
less than 10, or γexp = 1 otherwise. This discount does not
appear in published descriptions of UCS [1, 7] but is used in
UCS [5]. It is not a standard part of XCS but has been used
in it [3]. In later sections we show it has a significant impact
on performance by moderating the effect of rules that may
have an erroneous estimate of their own accuracy.

In this paper we investigate the weighting of rules in UCS.
In section 2 we study how to set the v parameter for best

performance. Then in section 3 we introduce a theoretical
framework under which a novel UCS rule fitness function,
which is optimal under certain assumptions, can be analyt-
ically derived. In the following three sections we compare
the alternative fitness functions on benign data, class im-
balanced data and noisy data respectively. In section 8 we
discuss future work and then we conclude in the final section.

2. REPLICATING UCS
We implemented UCS from scratch. In this section we

compare results with our implementation to the original and
study the effect of varying UCS’ v parameter on both classi-
fication accuracy and %[B], the proportion of the best action
map evolved [1]. We use the widely studied 11 multiplexer
problem. This is defined on binary strings of length 11,
and treats the string as being composed of an index seg-
ment (the first 3 bits) and a data segment (the remaining 8
bits). The value of the function is the value of the indexed
bit in the data segment; so, for example, the value of input
10111110101 is 1, since the index bits 101 point to data bit
51 which has the value 1. Following the XCS tradition we
conducted our replication experiment in an online learning
fashion, i.e. at each iteration a single datapoint is selected
with uniform random probability to present to the learn-
ing system. Figures report the accuracy over the last 50
datapoints seen, averaged over 20 repeat runs.

Figure 1 shows the accuracy of UCS on the 11-multiplexer,
for different values of v. Our implementation of UCS con-
verges to accuracy 1.0 in approximately the same number of
iterations as the original when a high v is used [6]. We note
that a setting of v = 5 results in very poor performance while
values up to approximately v = 30 result in improvements,
after which increasing v has no major effects. In later sec-
tions we will evaluate the tuning of v on other problems. The
UCS literature recommends setting v = 10, but no studies
or motivation for this value are given. As UCS is based on
XCS the v is likely to have been derived from XCS’ updates,
which have a related form. In XCS v is used to separate the
fitness of rules which otherwise would have similar fitness
([3] section 2.3.5.5). Exploration of the similarities between
XCS and UCS beyond the scope of this work, but we note
that v provides a means of tuning the UCS accuracy func-
tion. Figure 5 illustrates the effect of tuning; increasing v
gives more weight to the most accurate rules. We leave it
to future work to investigate how v has this effect. An im-
portant point to note, illustrated in figure 2, is that UCS
does not quite converge to accuracy 1.0 if we remove the
(previously undocumented) inexperience discount in eq(2).

Figure 3 shows UCS’ %[B] for various values of v. For all
values shown %[B] converges to 1. As v has little effect on
%[B] we will not report further results with it. However, we
note that the rate of convergence of %[B] is likely to be more
sensitive to selective pressure in the genetic algorithm than
convergence of accuracy, which is likely to be more sensitive
to parameterisation of voting. In UCS both are parame-
terised by v. That v affects accuracy and %[B] differently
suggests they should be parameterised independently, but
we leave this for future work. One of XCS’ innovations was
to separate a rule’s prediction from its fitness. Curiously,
UCS combines the two, despite being based on XCS.

1Being computer scientists we start counting at position 0.

0 5000 10000 15000 20000 25000 30000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Iterations

Ac
cu

ra
cy

v=30
v=20
v=10
v=5

Figure 1: Accuracy of UCS on 11mux, illustrating
the effect of the v parameter. In this case, going
beyond v = 30 produces no significant further im-
provements.

0.95

0.96

0.97

0.98

0.99

1

0 10000 20000 30000 40000 50000
Iterations

A
cc

ur
ac

y

 With discount

 Without discount

Figure 2: Accuracy of UCS(v = 30), illustrating that
UCS requires the previously undocumented inexpe-
rience discount to converge.

3. UCSPV : PRINCIPLED VOTING
In this section we demonstrate a principled method of

weighting votes, derived from the literature on computa-
tional learning theory. The weighting is optimal given the
assumptions of i) a particular exponential bound on the cost
function and ii) that there is no error in accuracy estimates.
Both assumptions are likely to make the derived weights
suboptimal in practice. While the first is outside the scope
of this work we will see that the inexperience discount and
related corrections may help address the second. A further
limitation is that the derivation is limited to two-class classi-
fication tasks. Despite these limitations the derived weights
have advantages over the original UCS weights in terms of
performance and ease of parameterisation. In being theoret-
ically well-grounded this approach is a good basis for further
work. In subsequent sections we will compare our new vote
to the original UCS.

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000
Iterations

%
[B
]

50

40

30

10

Figure 3: %[B] of UCS on 11mux, illustrating that
the v parameter has little effect.

3.1 Minimizing a Cost Function
The ultimate measure we wish to minimize with UCS is

the classification error rate,

P (error) =
1

|D|
∑

(x,c)∈D

I(H(x) 6= c) (3)

where H(x) is the prediction issued by the system, and D
is a training dataset. The unfortunate problem with this
is that the indicator function I(a 6= b) is discontinuous and
non-differentiable, so does not permit an analytic solution
for the individual rule fitnesses.

Instead, we adopt a methodology from Boosting, a pow-
erful learning system with roots in computational learning
theory and PAC-learnability [2, 8]. For binary problems, we
assume rule i implements a function hi(x) that provides a
label from {−1, 0, +1}, where a label of 0 indicates absten-
tion by the rule as it does not match the presented instance.
In this case the predicted class is given by

H(x) = sign
(∑

i

αihi(x)
)

(4)

where αi is a function proportional to the rule accuracy, in
our LCS framework corresponding to the rule fitness—we
would like to identify the optimal values for αi that mini-
mize the probability of system error. This implements a set
of localised weighted votes; it should be noted that this is
unnormalized, unlike eq(1). Each vote corresponds to the
area of input space matched by the rule, weighted by its
fitness αi. Now we assume a cost function that provides a
continuous, tight bound on the classification loss function,
but retains the desirable properties. This is shown in figure
4; the inequality described as I(H(x) 6= c) ≤ exp(−cd(x))

where d(x) =
∑

i

αihi(x).

Assuming this exponential cost, it can easily be seen that

P (error) ≤ 1

|D|
∑

(x,c)∈D

∏
i

exp(−αihi(x)c) (5)

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

cd(x)

C
os

t

exp(−cd(x))

I(c ≠ H(x))

Figure 4: Using an exponential cost function to
bound the classification error.

This says that the probability of error2 is bounded by a
function of the individual fitnesses, αi. If we minimize the
right hand side of equation 5 by independently minimising
these fitnesses, we are guaranteed to exponentially reduce
training error over the entire dataset. Taking the partial
derivative of eq(5) with respect to each αi, and solving for
αi at the minimum, we obtain an analytic solution for the
fitness,

αi =
1

2
ln

(1− εi

εi

)
(6)

This is plotted in figure 5, compared to the UCS formulation
from eq(2); it should be noted that our formulation does not
naturally use the inexperience discount factor γexp. We find
that the functions follow similar trends, but the gradients are
quite different over the range of possible accuracies (figure
6). We refer to UCS with the derived weights as UCSpv
(UCS with principled votes).

A complication is that the weighting function tends to
infinity as the accuracy tends to 1. To avoid overflow errors
when accuracy is 1 we set αi = α′ where α′ is a parameter
we can tune. α′ is like v in that it affects the slope of the
weighting curve (figure 5). LCS are notorious for the large
number of parameters they contain and we are reluctant to
introduce any new ones. However, we will have much more
to say about α′ in later sections.

4. BALANCED NOISELESS DATA
We now compare UCS to our new UCSpv on well-behaved

data. From this point forward we adopt an offline learning
regime. The 11-multiplexer has 2048 datapoints which we
uniform randomly split into 50% train and 50% test sets on
each of 20 repeat runs. In figures we plot accuracy on the
complete test set after every 500 training examples (which
we select uniform randomly with replacement). Figure 7
shows UCSpv with an arbitrary setting of α′ = 100 and
UCS with a range of v values. UCSpv dominates UCS, with
no need to tune α′. Our next step is to study the sensitivity
of each system to its weight-tuning parameter.

From this point on we generally dispense with learning
curves show the test set accuracy after 50, 000 training it-
erations. Figure 8 shows UCS’ accuracy over a range of v

2On the training set—extensions of this can apply to testing
data and provide (loose) bounds on generalisation error, but
this is outside the scope of this paper.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3

Classifier Accuracy

W
ei

gh
tin

g
Derived weights, αi from eq(6)
v=50
v=30
v=10

Figure 5: Derived vs UCS rule weightings

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classifier Accuracy

W
ei

gh
tin

g

v=5
v=10
v=30
v=50
v=100

Figure 6: Ratio of UCS gradient to derived weight
gradients

0 5000 10000 15000 20000 25000 30000
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Iterations

Te
st

in
g

Ac
cu

ra
cy

UCSpv (derived weights)
v=50
v=30
v=20
v=10

Figure 7: UCS and UCSpv on the 11mux using
50/50 train/test.

values, with and without the inexperience discount γexp. We
note i) low v results in very poor performance but perfor-
mance suddenly reaches a plateau as v rises, ii) the inex-
perience discount improves performance except when v is

0 20 40 60 80 100
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

UCS ν settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

Figure 8: Accuracy of UCS with/out the γexp discount.

The discount helps UCS significantly though conver-

gence to accuracy 1.0 is not guaranteed.

0 20 40 60 80 100 120 140 160 180 200
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

UCSpv α′ settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

Figure 9: Accuracy of UCSpv with/out the γexp dis-

count. Compare to performance of UCS in fig 8.

suboptimally low, and iii) UCS generally, but not always,
converges to accuracy 1 when v is high enough. The equiva-
lent results for UCSpv are in figure 9, where for completeness
we also incorporated the inexperience discount – we simply
multiply the αi value in eq(6) by 0.01 if the rule has matched
less than 10 examples. With and without the discount, and
over all values of α′, UCSpv converges to accuracy 1.0 on
virtually every run.

Results thus far are excellent. The accuracy of UCSpv is
marginally better than that of UCS, UCSpv does not need
the inexperience discount and its α′ parameter needs no tun-
ing. Further empirical study on this kind of benign data is
needed to confirm these advantages. However, we turn in-
stead to situations where the training data is less representa-
tive of the testing data. First we skew the class distribution,
then we add random noise to the class labels.

5. CLASS-IMBALANCED TRAINING SET
We now alter the 11 multiplexer to undersample one of the

two classes during training. UCS has been studied on class
imbalanced datasets before [1] and found to have difficulties.
In this case, however, we only imbalance the training set,
making it less representative of the test set, and thus makes
the problem even more difficult. At each training iteration
we select a class with a certain probability and sample the
dataset repeatedly until an example of that class is found.

0 20 40 60 80 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

UCS v settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

0 20 40 60 80 100 120 140 160 180 200
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

UCSpv α′ settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

Figure 10: Accuracy on 2:1 unbalanced data for UCS (left) and UCSpv (right) with/out discount

0 20 40 60 80 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

UCS v settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

0 20 40 60 80 100 120 140 160 180 200
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

UCSpv α′ settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

Figure 11: Accuracy on 4:1 unbalanced data for UCS (left) and UCSpv (right) with/out discount

0 20 40 60 80 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

UCS v settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

0 20 40 60 80 100 120 140 160 180 200
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

UCSpv α′ settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

Figure 12: Accuracy on 8:1 unbalanced data for UCS (left) and UCSpv (right) with/out discount

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UCS v settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

0 20 40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UCSpv α′ settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

Figure 13: Accuracy on multiplexer with 5% noise for UCS (left) and UCSpv (right) with/out discount

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UCS v settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

0 20 40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UCSpv α′ settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

Figure 14: Accuracy on multiplexer with 10% noise for UCS (left) and UCSpv (right) with/out discount

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UCS v settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

0 20 40 60 80 100 120 140 160 180 200
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

UCSpv α′ settting

Te
st

in
g

ac
cu

ra
cy

 a
fte

r 5
0,

00
0

ite
ra

tio
ns

Without discount

With discount

Figure 15: Accuracy on multiplexer with 15% noise for UCS (left) and UCSpv (right) with/out discount

Figures 10 to 12 show the performance of UCS on the left
and UCSpv on the right on a variety of imbalances. Error
bars in these and following figures show 95% confidence in-
tervals. Observations to be drawn from these figures are i)
as imbalance increases performance decreases for all algo-
rithms, ii) best performance for UCSpv is as good or better
than that of UCS in all cases except in the 8:1 condition (and
then only when UCS is carefully parameterised), iii) for im-
balanced data α′ has an effect; low values result in very poor
performance, iv) α′ is nonetheless easier to set than v as v
has a narrow intermediate range of optimal values while α′

reaches a plateau, v) the inexperience discount has no sta-
tistically reliable effect on UCSpv, and vi) at higher levels
of imbalance (4:1 and 8:1) the discount only improves UCS
at very low v whereas for 2:1 and 1:1 data it improves it at
higher v. In summary, for all cases examined so far, UCSpv
is easier to parameterise than UCS, and (with one exception
noted above), performs as well or better than UCS. Note also
that UCS requires the discount for best performance while
UCSpv does not. We defer analysis until section 7.

6. NOISY DATA
In the previous section we evaluated the effect of class

imbalances on UCS and UCSpv and also on the utility of
the γexp inexperience discount. In this section we report the
corresponding experiments with noisy data. We begin with
a noisy 11 multiplexer in which we have flipped the class
labels of 5%, 10% or 15% of the training data. We then
consider the Monks3 problem which has 5% class noise.

6.1 The Noisy Multiplexer
Results on the multiplexer with 0% noise have already

been given in figures 8 and 9. Figures 13 to 15 show the cor-
responding experiments with 5, 10 and 15% noise. Conclu-
sions to be drawn from these results are i) as noise increases
accuracy decreases for all algorithms, ii) best performance
for UCSpv is as good or better than that of UCS in all cases
(but see note below on the 15% noise condition) iii) for noisy
data α′ has an effect; low values are suboptimal and (unlike
for imbalanced data) high values are also suboptimal, iv) α′

is more robust than v (but the difference is not as great as
with the imbalanced data), v) unlike the imbalanced case the
inexperience discount now has a major benefit for UCSpv,
and vi) the discount uniformly improves UCS and improves
UCSpv except when α′ is suboptimally low.

We now return to the point noted in ii) above. Although
the accuracies of the optimally parameterised UCS and UC-
Spv are statistically indistinguishable given our 95% con-
fidence intervals, there is some suggestion that UCS may
outperform UCSpv on the most noisy data. This is simi-
lar to the case of highest class imbalance where optimally
parameterised UCS does outperform UCSpv. Thus we sus-
pect that on the most difficult data there is a narrow range
of parameterisation which results in better performance for
UCS.

To summarise results on all versions of the multiplexer,
most of our conclusions from the end of section 5 hold; in all
cases UCSpv is easier to parameterise than UCS, and, with
the exception discussed above, performs as well or better
than UCS. However, we have now found that on noisy data
(only) the inexperience discount helps UCSpv.

0 2000 4000 6000 8000 10000
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

A
cc

ur
ac

y

v=30

Derived

Figure 16: UCS and UCSpv on Monks3. Accuracy is
statistically indistinguishable at the 95% confidence
level.

6.2 The Monks3 problem
On the noisy multiplexer we found UCSpv performs best

when the inexperience discount is used and that a robust set-
ting for α′ is approximately 100. We tested these settings
on the Monks3 problem, which has 5% noise. For compar-
ison we evaluated UCS with various v values and selected
the best (v = 30). Figure 16 illustrates that these settings
match the performance of UCS with tuned v.

7. ANALYSIS
At the start of section 3 we noted that UCSpv’s weights

are optimal only given certain assumptions We hypothe-
sise that the second assumption, that accuracy estimates
are error-free, is violated on the more difficult data. As we
increase either imbalance or noise the training set becomes
less representative of the test set and hence accuracy esti-
mates obtained on the training set increase in error when
classifiers are applied to the test set. This would explain
why the inexperience discount becomes helpful for UCSpv
on the noisy data though why it is not on the imbalanced
data is unclear. We leave this to future work to resolve.

On class-balanced, noiseless data UCSpv’s α′ had no effect
but as we increased problem difficulty the need to tune α′

also increased. Our interpretation is that the UCSpv weights
need significant corrections for data which violate their as-
sumptions. Indeed, Freund and Schapire have already noted
this weighting scheme has difficulties with noisy data [2]. An
important observation is that α′ only affects one point on
the weighting curve and is thus a very poor means of tuning
it. (Despite this, α′ has a major effect on UCSpv’s accuracy
on the harder problems.) Consequently, the v parameter al-
lows us to tune UCS more effectively than α′ allows us to
tune UCSpv. We hypothesise this accounts for the higher
accuracy of the optimally parameterised UCS on the most
highly class-imbalanced problem. In future we will investi-
gate more powerful alternatives to α′ and base our weights
on other exponential bounds. In the next section we will see
that α′ can actually become irrelevant.

0 2000 4000 6000 8000 10000
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Iterations

A
cc

ur
ac

y

v=30

Derived (discount)

Figure 17: UCS and UCSpv(κ) accuracy on the
Monks3 problem, κ = 0.95

8. CORRECTING ACCURACY ESTIMATES
If we suspect our training data contains noise we should

expect rule accuracies estimated on it to be overestimates.
This is a problem because rules with overestimated accuracy
are given too much weight, which should result in reduced
test set accuracy. The extreme case illustrates this principle
nicely; a rule with accuracy 1 should, theoretically, have
infinite weight. This is sensible if the rule really does have
accuracy 1, but if we have any doubt of its accuracy we
should give it a finite weight.

There are various means of correcting accuracy estimates.
One is the γexp inexperience discount, which presumes that
rules with less than 10 matches will have inaccurate accu-
racy estimates. In sections 4–6 we found this discount was
sometimes beneficial and we now briefly experiment with an-
other form of correction. Since we have a diminished trust
in the accuracy estimate εi, we can use the following:

αi =
1

2
ln

(κ(1− εi)

1− κ(1− εi)

)
(7)

where κ is a parameter we tune based on our anticipation of
noise. κ can be interpreted as our “trust” in the accuracy
estimate—the more noise in the data, the less trust we have.

We experimented on the Monks3 problem where we know
there is noise in the data and so set a discount of κ = 0.95.
Figure 17 demonstrates this correction results in signifi-
cantly higher accuracy and lower variance for UCSpv(κ)
than UCS. This contrasts with figure 16 in which there is no
significant difference between UCSpv and UCS. In addition
to improving performance, using κ makes α′ irrelevant since
with κ < 1, equation (7) does not overflow.

Future work will explore more principled ways of incor-
porating statistical confidence into κ. Elsewhere, we have
begun to investigate Bayesian estimation of rule accuracy
[4] as a principled approach to discounting, and we will de-
velop this approach further in future work.

9. CONCLUSIONS
First, through careful replication of results and with the

help of others we identified two undocumented features of
UCS. These were (1) a normalisation of the system predic-

tion, and (2) a discount for low experience rules. Second,
we derived a principled voting method for UCS, which we
called UCSpv. Drawing on the pattern recognition litera-
ture on the minimization of exponential cost functionals, we
replaced the original weighting function with a more princi-
pled one – essentially bounding the classification error with
a continuous function and minimizing that function, thereby
minimizing the classification error indirectly. We derived an
analytic solution for rule weighting. This is currently used
for both voting and genetic fitness, but in future work we
will optimise them independently.

In section 4 we found UCSpv superior to UCS on be-
nign (noiseless and class-balanced) data; UCSpv’s accuracy
was higher and, unlike UCS, its weighting function needed
no tuning. In sections 5 and 6 we showed that more dif-
ficult data, where the training set is less representative of
the test set, degrades the performance of both UCS and
UCSpv. There was evidence that optimally parameterised
UCS could outperform the optimally parameterised UCSpv.
In section 7 we concluded the more difficult data violated
the assumptions under which UCSpv’s weights are optimal,
and that UCS’ tuning parameter was more effective than
UCSpv’s. In section 8 we presented preliminary results in-
dicating that a correction to UCSpv’s weights to account for
noise in the data can be effective at improving accuracy.

As a final note, an advantage of the view we adopted is
that it permits other cost functionals than pure exponential,
enabling a framework to design the fitness function in a
principled manner. Future work will explore this promising
new direction for supervised LCS, and attempt to extend
the principles to reinforcement learners like XCS.

10. ACKNOWLEDGEMENTS
We thank Albert Orriols-Puig and Kamran Shafi for help

in implementing UCS and Alwyn Barry for many comments.

11. REFERENCES
[1] E. Bernadó-Mansilla and J. M. Garrell-Guiu.

Accuracy-based learning classifier systems: models,
analysis and applications to classification tasks.
Evolutionary Computation, 11(3):209–238, 2003.

[2] Y. Freund and R. E. Schapire. Experiments with a new
boosting algorithm. In Proc. 13 Int. Conf. on Machine
Learning, pp. 148–156. Morgan Kaufmann, 1996.

[3] T. Kovacs. Strength or Accuracy: Credit Assignment in
Learning Classifier Systems. Springer, 2002.

[4] J. A. R. Marshall, G. Brown and T. Kovacs. Bayesian
estimation of rule accuracy in UCS. In Tina Yu, ed.,
Proceedings of the 2007 workshops on genetic and
evolutionary computation. ACM Press, 2007.

[5] A. Orriols-Puig. Personal Communication 15 Oct. 2006.

[6] A. Orriols-Puig. Personal Communication 26 Oct. 2006.

[7] A. Orriols-Puig and E. Bernadó-Mansilla. A further
look at UCS classifier system. In J. van Hemert ed.,
Proceedings of the 2007 workshops on genetic and
evolutionary computation. ACM Press, 2006.

[8] R. E. Schapire. Theoretical views of boosting and
applications. In Algorithmic Learning Theory, 10th
Int. Conf., LNAI 1720, pp. 13–25. Springer, 1999.

[9] S. W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 2(3):149–175, 1995.

