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1 Proof of Lemma 1

Lemma 1. Assuming data is selected completely at random, the conditional dis-
tribution of x given y = 1 is equal to the conditional distribution of x given that
it is labelled.

p(x|y+) = p(x|s+) ∀ x ∈ X .

Proof. Using Bayes’ theorem we have:

p(x|s+) =
p(x)p(s+|x)

p(s+)
(1)

Using the selected completely at random assumption the following expression is
proved in [2, Lemma 1].

p(y+|x) =
p(s+|x)

p(s+|y+)
(2)

So from eq. (1) and (2) we have:

p(x|s+) = p(x)p(y+|x)
p(s+|y+)

p(s+)
= p(x, y+)

p(s+, y+)

p(s+)p(y+)
=

= p(x|y+)p(y+|s+) = p(x|y+).

where in the last step we used the property p(y+|s+) = 1, since all the labelled
examples are positive.

2 Proof of Theorem 1

Theorem 1. In the positive unlabelled scenario, under the selected completely
at random assumption, a variable X is independent of the class label Y if and
only if X is independent of S, so it holds X ⊥⊥ Y ⇔ X ⊥⊥ S.
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Proof. To prove X ⊥⊥ Y ⇔ X ⊥⊥ S, we need to prove that

p(x, s) = p(x)p(s)⇔ p(x, y) = p(x)p(y) ∀ x ∈ X , y ∈ Y and s ∈ S.

Since the random variables S and Y are binary it is sufficient to prove this for
the two classes. So for the first class we have

p(x, s+) = p(x)p(s+)⇔ p(x|s+) = p(x)⇔
p(x|y+) = p(x)⇔ p(x, y+) = p(x)p(y+),

where in the second step we have used the selected completely at random as-
sumption as expressed in Lemma 1.

Using the above result for the first class, we will prove it also for the second
class

p(x, s−) = p(x)p(s−)⇔ p(x)− p(x, s+) = p(x)(1− p(s+))⇔
p(x, s+) = p(x)p(s+)⇔ p(x, y+) = p(x)p(y+)⇔

p(x)− p(x, y−) = p(x)(1− p(y−))⇔ p(x, y−) = p(x)p(y−).

3 Proof of Theorem 2

Theorem 2. In the positive unlabelled scenario, under the selected completely
at random assumption, when X and Y are dependent random variables (X⊥⊥Y )
we have I(X;Y ) > I(X;S).

Proof. The mutual information between variables X,Y (for categorical X and
binary Y ) is

I(X;Y ) =
∑

x∈X
p(x, y+) ln

p(x, y+)

p(x)p(y+)
+
∑

x∈X
p(x, y−) ln

p(x, y−)

p(x)p(y−)
.

Using the equation p(x|y−) = p(x)−p(x|y+)p(y+)
1−p(y+) , this can be re-expressed as

I(X;Y ) =
∑

x∈X
p(x|y+)p(y+) ln

p(x|y+)

p(x)

+
∑

x∈X
(p(x)− p(x|y+)p(y+)) ln

p(x)− p(x|y+)p(y+)

p(x)(1− p(y+))
.

In order to explore the relationship between I(X;Y ) and I(X;S) we introduce
the following function:

f(p̃) =
∑
x∈X

p(x|s+)p̃ ln
p(x|s+)

p(x)
+
∑
x∈X

(p(x)− p(x|s+)p̃) ln
p(x)− p(x|s+)p̃

p(x)(1− p̃) . (3)

When p̃ = p(y+), and using Lemma 1, this is exactly I(X;Y ). Alternatively,
when p̃ = p(s+), this is exactly I(X;S). So in order to explore the relationship
between I(X;Y ) and I(X;S), we should explore the monotonicity of the function
f(p̃) with the following lemma.
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Lemma 2. Under the selected completely at random assumption f is a non-
decreasing function of p̃, and it is strictly increasing when X⊥⊥Y .

Proof (of Lemma 2). By taking the first derivative of f with respect to p̃ we
have

d

dp̃
f(p̃) = −

∑

x∈X
p(x|s+) ln

p(x)
p(x|s+) − p̃

1− p̃
.

Applying Jensen’s inequality to the strictly convex function −ln(·), we get

d

dp̃
f(p̃) ≥ − ln

∑

x∈X
p(x|s+)

p(x)
p(x|s+) − p̃

1− p̃

= − ln

(
1

1− p̃
∑

x∈X

(
p(x)− p̃p(x|s+)

)
)

= − ln
1− p̃
1− p̃

= 0.

So f(p̃) is a non-decreasing function of p̃. Furthermore we will have equality if

and only if
p(x)

p(x|s+)
−p̃

1−p̃ is constant for all x ∈ X . This implies that we will have
d
dp̃f(p̃) = 0 if and only if p(x) = p(x|s+) ∀ x ∈ X , or in other words when
X ⊥⊥ Y . So when X⊥⊥Y , f is strictly increasing function of p̃. Which finishes
the proof of Lemma 2. ut

Given Lemma 2, and combining it with the fact that in PU data p(y+) >
p(s+), when X⊥⊥Y we get

f(p(y+)) > f(p(s+))⇔ I(X;Y ) > I(X;S)

and this two quantities are equal only when X ⊥⊥ Y . Which finishes the proof
of Theorem 2.

4 Proof of Theorem 3

Theorem 3. The non-centrality parameter of the G-test between X and S takes
the form:

λG(X;S) = κλG(X;Y ) = κ2NI(X;Y ),

where κ = 1−p(y+)
p(y+)

p(s+)
1−p(s+) = 1−p(y+)

p(y+)

NS+

N−NS+
.

Proof. In order to prove that relationship we will use the result of [3] that when
we assume local alternatives or contiguous alternatives the χ2 and the G-test
have the same asymptotic power [3, p. 109], in other words their non-centrality
parameters converge to a common value as N →∞ [1, Section 16.3.5].

So instead of exploring the relationship of the non-centrality parameters for
the G-tests between X,S and X,Y , we can explore the relationship between the
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non-centrality parameters of the χ2-tests between X,S and X,Y . [1, Section
6.6.4] presents the non-centrality parameter (λχ2(X;Y )) for the χ2-test

λχ2(X;Y ) =N
∑

x∈X

∑

y∈Y

(p(x, y)− p(x)p(y))
2

p(x)p(y)

We will start by re-expressing that non-centrality parameter in the following way

λχ2(X;Y ) =N
∑
x∈X

(
p(x, y+)− p(x)p(y+)

)2
p(x)p(y+)

+N
∑
x∈X

(
p(x, y−)− p(x)p(y−)

)2
p(x)p(y−)

λχ2(X;Y ) =N
∑
x∈X

(
p(x, y+)− p(x)p(y+)

)2
p(x)p(y+)

+N
∑
x∈X

(
p(x)− p(x, y+)− p(x)(1− p(y+))

)2
p(x)(1− p(y+))

λχ2(X;Y ) =N
∑
x∈X

(
p(x, y+)− p(x)p(y+)

)2
p(x)p(y+)

+N
∑
x∈X

(
p(x, y+)− p(x)p(y+)

)2
p(x)(1− p(y+))

λχ2(X;Y ) = p(y+)N
∑
x∈X

(
p(x|y+)− p(x)

)2
p(x)

+
p(y+)2

1− p(y+)
N
∑
x∈X

(
p(x|y+)− p(x)

)2
p(x)

λχ2(X;Y ) =
p(y+)

1− p(y+)
N
∑
x∈X

(
p(x|y+)− p(x)

)2
p(x)

(4)

Following exactly the same procedure for the non-centrality parameter of the
χ2-test between X and S we get

λχ2(X;S) =
p(s+)

1− p(s+)
N
∑

x∈X

(p(x|s+)− p(x))
2

p(x)

Using Lemma 1 this parameter is written as

λχ2(X;S) =
p(s+)

1− p(s+)
N
∑

x∈X

(p(x|y+)− p(x))
2

p(x)
(5)

So by combining (4) and (5) we get the expression

λχ2(X;S) =
1− p(y+)

p(y+)

p(s+)

1− p(s+)
λχ2(X;Y )

By using the result that the non-centrality parameters for the χ2 and G-test
converge to a common value, we can re-write the above relationship using the
non-centrality parameter of the G-test

λG(X;S) =
1− p(y+)

p(y+)

p(s+)

1− p(s+)
λG(X;Y ) =

1− p(y+)

p(y+)

p(s+)

1− p(s+)
2NI(X;Y ).

so by representing the factor as κ = 1−p(y+)
p(y+)

p(s+)
1−p(s+) we get

λG(X;S) = κλG(X;Y ) = κ2NI(X;Y ).



Statistical Hypothesis Testing in Positive Unlabelled Data 5

5 Figures for features with |X | = 10

In order to generate the random variables we followed the same procedure as
the one presented in the paper. Firstly we generate a random sample a random
sample y = {yi=1, .., yN}, where each yi ∈ {0, 1} and p(y = 1) = 0.2. Then we
create the sample xNi=1 as follows: when yi=0 we choose uniformly for yx=1 an
integer random value between 1 to |X |/2, while when yi=1 we choose uniformly an
integer random value between |X |/2+1 to |X |.We then corrupt this dependency
from by picking a random fraction of the examples, and setting a new value for
each selected xi by drawing a uniformly and integer random variable between 1
to |X | . It is clear that by varying the number of examples which are corrupted
by noise, we generate random variables with different mutual informations. By
taking a large sample estimate, N = 1, 000, 000, we can for example determine
that when we corrupt 60% of the examples, the resultant variables have mutual
information I(X;Y ) ≈ 0.053.
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Fig. 1: Figure for Type-I error. (a) Type-I error changing as a function of the
probability of an example being labeled p(s+), for fixed α = 0.01, N = 1000. (b)
Type-I error changing as a function of N , for fixed α = 0.01, p(s+) = 0.10.
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Fig. 2: Figure for comparing the Type-II error of the two tests using (a) α = 0.01
and (b) α = 0.10.



6 K. Sechidis et al.

0    0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 
0

0.2

0.4

0.6

0.8

1

I(X;Y)

%
 a

cc
ep

ta
nc

e 
of

 H
0

 = 0.01, df = 9, p(y+) = 0.20, p(s+) = 0.05

 

 

G(X;S) with N = 1000
G(X;Y) with N = 1000
G(X;S) with N = 1000/

(a)

0    0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 
0

0.2

0.4

0.6

0.8

1

I(X;Y)

%
 a

cc
ep

ta
nc

e 
of

 H
0

 = 0.10, df = 9, p(y+) = 0.20, p(s+) = 0.05

 

 

G(X;S) with N = 1000
G(X;Y) with N = 1000
G(X;S) with N = 1000/

(b)

Fig. 3: Figure for comparing the Type-II error of the two tests and the G-test
between X and S with corrected sample size , using (a) α = 0.01. (b) α = 0.10.
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Fig. 4: Figures for sample size determination. (a) Contrasting classical power
analysis with PU power analysis to determine the minimum sample size. Arrows
show that with 5% supervision (p(s+) = 0.05), we need N ≥ 1743 examples
to achieve the desired power in order to observe a supervised effect I(X;Y ) =
0.053. (b) Sample size determination under the PU constraint. Given a required
statistical power, this illustrates the minimum total number of examples (N)
needed, assuming we can only label 5% of the instances. For example, if we wish
to detect a mutual information as low as 0.04, we need N ≥ 2310 to have a
power of 99%.
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Fig. 5: Determining the required number of labelled examples. This illustrates the
required number of labelled examples (NS+), assuming N = 1000. For example,
to detect a mutual information dependency as low as 0.02, in order to have a
power of 95%, we need labels for 160 examples, which means that we need to
label at 80% of the positive examples.
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Fig. 6: Figures for False Negative Rate. (a) Full supervision, when the true mu-
tual information is I(X;Y ) = 0.053. This verifies the theoretical prediction from
Fig. 4a, that the minimum sample size to achieve 99% power is 367. (b) Su-
pervision level p(s+) = 0.05, supporting the predictions of Figure 4a, that the
minimum sample size to achieve 99% power is 1743.
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Fig. 7: FNR for varying levels of supervision in the PU constraint, with re-
quired power 99%, verifying Figure 5 (solid line), which predicted we would
need p(s+) ≥ 0.085⇔ Ns+ ≥ 85 to get FNR < 0.01.

I(X;Y) = 0.053, power =0.99, α = 0.01, df = 9, p(y+) = 0.20
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Fig. 8: Sample size determination under uncertain prior knowledge. LEFT: The
user’s prior belief over the value of p(y+). The dashed line shows the true (but
unknown) value in the data. RIGHT: The resultant uncertainty in the required
sample size when we have only 5% of the examples being labeled.
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I(X;Y) = 0.053, power = 0.99, α = 0.01, df = 9, p(y+) = 0.20
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Fig. 9: Supervision determination under uncertain prior knowledge. LEFT: The
user’s prior belief over the value of p(y+). The dashed line shows the true (but
unknown) value in the data. RIGHT: The resultant uncertainty in the minimum
number of required labeled examples when we have only N = 1000. The dashed
line indicates the the true value with no uncertainty in p(y+).

I(X;Y) = 0.053, power = 0.99, α = 0.01, df = 9, p(y+) = 0.20

0 0.2 0.4
0

10

20

P
D

F

0 1000 2000 3000 0 100

0 0.2 0.4
0

10

20

p̃

P
D

F

0 2000

N
min.

 for p(s+) = 0.05
0 100
N

S
+
,min.

 for N = 1000

Fig. 10: A-priori power analysis under uncertain prior knowledge, when we un-
derestimate (first row) and overestimate (second row) the prior.
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6 Tables for features with |X | = 10

Table 1: Sample size required for df = 9 and α = 0.01.

(a) Traditional

Effect sizes
Power Small Medium Large
0.70 1830 204 74
0.80 2143 239 86
0.90 2613 291 105
0.95 3031 337 122
0.99 3890 433 156

(b) PU with p(y+) = 0.20, p(s+) = 0.05

Effect sizes
Power Small Medium Large

0.70 8691 966 348
0.80 10179 1131 408
0.90 12409 1379 497
0.95 14395 1600 576
0.99 18474 2053 739

Table 2: Labelled positive examples required for a PU test with p(y+) = 0.20,
N = 5000, df = 9 and α = 0.01.

Effect sizes
Power Small Medium Large

0.70 420 51 19
0.80 484 59 22
0.90 578 72 26
0.95 658 83 31
0.99 814 106 39
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