

Statistical Hypothesis Testing in Positive Unlabelled Data

Konstantinos Sechidis*, Borja Calvo**, Gavin Brown*

*School of Computer Science University of Manchester, UK

**Department of Computer Science and Artificial Intelligence
University of Basque Country, Spain

Scope of this work

We use <u>hypothesis tests</u> a lot.

G-test
Chi-squared test

Mutual Information too...

e.g.

Bayesian network structure learning

- should there be an arc between node X and Y?

Feature Selection

- should we select feature X?

Decision trees

- should we split on feature X?

Contributions of this work

Explores the dynamics of hypothesis testing in "positive-unlabelled" data.

Special case of Semi-supervised data

- 1. Can we perform a valid hypothesis test in this situation?
- 2. Sample size determination: how many examples do I need?
- 3. "Supervision determination": how many labelled examples do I need?

"Positive-Unlabelled" data

Fully labelled

X	Υ		
2	1		
3	1		
1	1		
2	1		
1	1		
3	0		
1	0		
3	0		
3	0		

Semi supervised

X	Υ
2	1
3	1
1	1
2	1
1	1
3	0
1	0
3	0
3	
2	0

Positive Unlabelled

X	Υ
2	1
3	1
1	1
2	1
1	1
3	0
1	0
3	0
3	0
2	0

PU data applications

Many many applications...

Functional Genomics

- "Gene 23 is associated with the disease."
- "The other ones... we don't know."

Text Mining

Background: Hypothesis Tests

Step 1.

Calculate G-statistic...

$$G = 2\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} O_{x,y} \ln \frac{O_{x,y}}{E_{x,y}}$$

Step 2.

Compare to critical value, obtained from lookup table.

Х	Υ
2	1
3	1
1	1
2	1
1	1
3	0
1	0
3	0
3	0

if G > critical value...

REJECT NULL HYPOTHESIS

i.e. assume X and Y are related

else

ACCEPT NULL HYPOTHESIS

i.e. assume X and Y are INDEPENDENT

Tabulated values of cumulative chi-squared distribution

Hypothesis Testing in PU data?

Step 1.

Calculate G-statistic...

1

1

0

0

0

0

0

0

$$G = 2\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} O_{x,y} \ln \frac{O_{x,y}}{E_{x,y}}$$

Х	Υ	
2	1	
3	1	
1	1	
2	1	
1	1	
3	0	
1	0	
3	0	
3	0	
2	0	

Assume all negative?

S = "surrogate"

Then use test for G(X;S) instead of G(X;Y)

Selected completely at random assumption

Positive examples labelled with probability $p(s^+|y^+)$

Lemma 1

$$p(x|y^+) = p(x|s^+)$$

Theorem 1
$$X \perp \!\!\!\perp Y \Leftrightarrow X \perp \!\!\!\perp S$$

Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In: SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (2008)

Theorem 1 implies...

Testing with the surrogate G(X;S) will have an identical FALSE POSITIVE rate to the original (unobservable) test.

However....

Testing for G(X;S) will have a higher **FALSE NEGATIVE** rate.

That is... If X;Y are truly related,

..... we may miss that dependency by using the surrogate test G(X;S).

Х	Υ	S
2	1	1
3	1	1
1	1	1
2	1	0
1	1	0
3	0	0
1	0	0
3	0	0
3	0	0
2	0	0

Technical explanation for this....

Theorem 2

If $X \not\perp\!\!\!\perp Y$ then I(X;Y) > I(X;S)

Contributions of this work

1. Can we perform a valid hypothesis test in this situation?

- 2. Sample size determination: how many examples do I need?
- 3. "Supervision determination": how many labelled examples do I need?

Sample Size Determination

$$G(X;Y)$$
 $G(X;S)$

I want my statistical test to detect an "effect" as small as

How many examples (N)
do I need?

Х	Υ	S
2	1	1
3	1	1
1	1	1
2	1	0
1	1	0
3	0	0
1	0	0
3	0	0
3	0	0
2	0	0

Standard sample size determination does not apply....

So, we derive a correction factor, kappa....

The non-centrality parameter of the test:

Probability of p(s=1) i.e. probability of being labelled.

Theorem 3

$$\lambda_{G(X;S)} = \kappa 2NI(X;Y), \kappa = \frac{1-p(y^+)}{p(y^+)} \frac{p(s^+)}{1-p(s^+)}$$

G(X;S) test with sample size N/k

• • • •

....obtains identical FPR and FNR to the (unobservable) test G(X;Y)

Prior probability of p(y=1)

PU sample size determination... assuming we know p(y=1)

PU sample size determination... uncertainty over p(y=1)

Place Beta distribution over p(y=1), use Monte Carlo simulation to determine posterior over sample size N.

Analytical solution seems to be intractable.

$$I(X;Y) = 0.053$$
, power =0.99, $\alpha = 0.01$, df = 1, $p(y^{+}) = 0.20$

Contributions of this work

1. Can we perform a valid hypothesis test in this situation?

- 2. Sample size determination: how many examples do I need?
- 3. "Supervision determination": how many labelled examples do I need?

PU "supervision determination"

Use similar methodology to before, except we fix N, and solve for p(s+)

 $\alpha = 0.01$, df = 1, p(y⁺) = 0.20, N = 1000 200 power = 0.99 power = 0.95150 --- power = 0.90 100 50⁻¹ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 I(X;Y)

From the total N=1000, ...you need only 57 labels.

...the rest can be unlabelled

If uncertain p(y=1)

Example for Practitioner Supervision determination

Design an experiment to observe ...

... a medium effect of I(X;Y) = 0.045 nats

... with False Positive Rate = 0.01

... with False Negative Rate = 0.05

.... having N = 3000 examples

Positive Unlabelled

knowing prior to be p(y=1) = 0.20

3000 examples

- 49 positives
- 2951 unlabelled

Conclusions

- 1. We perform a valid hypothesis test in PU data by unlabelled as negatives.
- 2. Sample size determination: How many examples we need to collect.
- 3. "Supervision determination": How many labelled examples we need to collect.

Thank you for your attention!

www.cs.man.ac.uk/~gbrown/posunlabelled/

Example for Practitioner Sample size determination

Design an experiment to observe ...

... a medium effect of I(X;Y) = 0.045 nats

... with False Positive Rate = 0.01

... with False Negative Rate = 0.20

